Metamath Proof Explorer


Theorem divnumden2

Description: Calculate the reduced form of a quotient using gcd . This version extends divnumden for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017)

Ref Expression
Assertion divnumden2 ABBnumerAB=AAgcdBdenomAB=BAgcdB

Proof

Step Hyp Ref Expression
1 zssq
2 simp1 ABBA
3 1 2 sselid ABBA
4 simp2 ABBB
5 1 4 sselid ABBB
6 nnne0 BB0
7 6 3ad2ant3 ABBB0
8 neg0 0=0
9 8 neeq2i B0B0
10 7 9 sylibr ABBB0
11 10 neneqd ABB¬B=0
12 4 zcnd ABBB
13 0cnd ABB0
14 12 13 neg11ad ABBB=0B=0
15 11 14 mtbid ABB¬B=0
16 15 neqned ABBB0
17 qdivcl ABB0AB
18 3 5 16 17 syl3anc ABBAB
19 qnumcl ABnumerAB
20 18 19 syl ABBnumerAB
21 20 zcnd ABBnumerAB
22 simpl ABA
23 22 zcnd ABA
24 23 3adant2 ABBA
25 2 4 gcdcld ABBAgcdB0
26 25 nn0cnd ABBAgcdB
27 26 negcld ABBAgcdB
28 15 intnand ABB¬A=0B=0
29 gcdeq0 ABAgcdB=0A=0B=0
30 29 necon3abid ABAgcdB0¬A=0B=0
31 30 3adant3 ABBAgcdB0¬A=0B=0
32 28 31 mpbird ABBAgcdB0
33 26 32 negne0d ABBAgcdB0
34 24 27 33 divcld ABBAAgcdB
35 24 12 16 divneg2d ABBAB=AB
36 35 fveq2d ABBnumerAB=numerAB
37 numdenneg ABnumerAB=numerABdenomAB=denomAB
38 37 simpld ABnumerAB=numerAB
39 18 38 syl ABBnumerAB=numerAB
40 gcdneg ABAgcdB=AgcdB
41 40 3adant3 ABBAgcdB=AgcdB
42 41 oveq2d ABBAAgcdB=AAgcdB
43 divnumden ABnumerAB=AAgcdBdenomAB=BAgcdB
44 43 simpld ABnumerAB=AAgcdB
45 44 3adant2 ABBnumerAB=AAgcdB
46 24 27 33 divnegd ABBAAgcdB=AAgcdB
47 24 26 32 div2negd ABBAAgcdB=AAgcdB
48 46 47 eqtrd ABBAAgcdB=AAgcdB
49 42 45 48 3eqtr4d ABBnumerAB=AAgcdB
50 36 39 49 3eqtr3d ABBnumerAB=AAgcdB
51 21 34 50 neg11d ABBnumerAB=AAgcdB
52 24 26 32 divneg2d ABBAAgcdB=AAgcdB
53 51 52 eqtr4d ABBnumerAB=AAgcdB
54 35 fveq2d ABBdenomAB=denomAB
55 37 simprd ABdenomAB=denomAB
56 18 55 syl ABBdenomAB=denomAB
57 41 oveq2d ABBBAgcdB=BAgcdB
58 43 simprd ABdenomAB=BAgcdB
59 58 3adant2 ABBdenomAB=BAgcdB
60 12 26 32 divneg2d ABBBAgcdB=BAgcdB
61 12 26 32 divnegd ABBBAgcdB=BAgcdB
62 60 61 eqtr3d ABBBAgcdB=BAgcdB
63 57 59 62 3eqtr4d ABBdenomAB=BAgcdB
64 54 56 63 3eqtr3d ABBdenomAB=BAgcdB
65 64 60 eqtr4d ABBdenomAB=BAgcdB
66 53 65 jca ABBnumerAB=AAgcdBdenomAB=BAgcdB