Description: Calculate the reduced form of a quotient using gcd . This version extends divnumden for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | divnumden2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq | |
|
2 | simp1 | |
|
3 | 1 2 | sselid | |
4 | simp2 | |
|
5 | 1 4 | sselid | |
6 | nnne0 | |
|
7 | 6 | 3ad2ant3 | |
8 | neg0 | |
|
9 | 8 | neeq2i | |
10 | 7 9 | sylibr | |
11 | 10 | neneqd | |
12 | 4 | zcnd | |
13 | 0cnd | |
|
14 | 12 13 | neg11ad | |
15 | 11 14 | mtbid | |
16 | 15 | neqned | |
17 | qdivcl | |
|
18 | 3 5 16 17 | syl3anc | |
19 | qnumcl | |
|
20 | 18 19 | syl | |
21 | 20 | zcnd | |
22 | simpl | |
|
23 | 22 | zcnd | |
24 | 23 | 3adant2 | |
25 | 2 4 | gcdcld | |
26 | 25 | nn0cnd | |
27 | 26 | negcld | |
28 | 15 | intnand | |
29 | gcdeq0 | |
|
30 | 29 | necon3abid | |
31 | 30 | 3adant3 | |
32 | 28 31 | mpbird | |
33 | 26 32 | negne0d | |
34 | 24 27 33 | divcld | |
35 | 24 12 16 | divneg2d | |
36 | 35 | fveq2d | |
37 | numdenneg | |
|
38 | 37 | simpld | |
39 | 18 38 | syl | |
40 | gcdneg | |
|
41 | 40 | 3adant3 | |
42 | 41 | oveq2d | |
43 | divnumden | |
|
44 | 43 | simpld | |
45 | 44 | 3adant2 | |
46 | 24 27 33 | divnegd | |
47 | 24 26 32 | div2negd | |
48 | 46 47 | eqtrd | |
49 | 42 45 48 | 3eqtr4d | |
50 | 36 39 49 | 3eqtr3d | |
51 | 21 34 50 | neg11d | |
52 | 24 26 32 | divneg2d | |
53 | 51 52 | eqtr4d | |
54 | 35 | fveq2d | |
55 | 37 | simprd | |
56 | 18 55 | syl | |
57 | 41 | oveq2d | |
58 | 43 | simprd | |
59 | 58 | 3adant2 | |
60 | 12 26 32 | divneg2d | |
61 | 12 26 32 | divnegd | |
62 | 60 61 | eqtr3d | |
63 | 57 59 62 | 3eqtr4d | |
64 | 54 56 63 | 3eqtr3d | |
65 | 64 60 | eqtr4d | |
66 | 53 65 | jca | |