Metamath Proof Explorer


Theorem djhlj

Description: Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014)

Ref Expression
Hypotheses djhlj.b B=BaseK
djhlj.k ˙=joinK
djhlj.h H=LHypK
djhlj.i I=DIsoHKW
djhlj.j J=joinHKW
Assertion djhlj KHLWHXBYBIX˙Y=IXJIY

Proof

Step Hyp Ref Expression
1 djhlj.b B=BaseK
2 djhlj.k ˙=joinK
3 djhlj.h H=LHypK
4 djhlj.i I=DIsoHKW
5 djhlj.j J=joinHKW
6 simpl KHLWHXBYBKHLWH
7 simprl KHLWHXBYBXB
8 eqid DVecHKW=DVecHKW
9 eqid BaseDVecHKW=BaseDVecHKW
10 1 3 4 8 9 dihss KHLWHXBIXBaseDVecHKW
11 7 10 syldan KHLWHXBYBIXBaseDVecHKW
12 simprr KHLWHXBYBYB
13 1 3 4 8 9 dihss KHLWHYBIYBaseDVecHKW
14 12 13 syldan KHLWHXBYBIYBaseDVecHKW
15 eqid ocHKW=ocHKW
16 3 8 9 15 5 djhval KHLWHIXBaseDVecHKWIYBaseDVecHKWIXJIY=ocHKWocHKWIXocHKWIY
17 6 11 14 16 syl12anc KHLWHXBYBIXJIY=ocHKWocHKWIXocHKWIY
18 hlop KHLKOP
19 18 ad2antrr KHLWHXBYBKOP
20 eqid ocK=ocK
21 1 20 opoccl KOPXBocKXB
22 19 7 21 syl2anc KHLWHXBYBocKXB
23 1 20 opoccl KOPYBocKYB
24 19 12 23 syl2anc KHLWHXBYBocKYB
25 eqid meetK=meetK
26 1 25 3 4 dihmeet KHLWHocKXBocKYBIocKXmeetKocKY=IocKXIocKY
27 6 22 24 26 syl3anc KHLWHXBYBIocKXmeetKocKY=IocKXIocKY
28 1 20 3 4 15 dochvalr2 KHLWHXBocHKWIX=IocKX
29 7 28 syldan KHLWHXBYBocHKWIX=IocKX
30 1 20 3 4 15 dochvalr2 KHLWHYBocHKWIY=IocKY
31 12 30 syldan KHLWHXBYBocHKWIY=IocKY
32 29 31 ineq12d KHLWHXBYBocHKWIXocHKWIY=IocKXIocKY
33 27 32 eqtr4d KHLWHXBYBIocKXmeetKocKY=ocHKWIXocHKWIY
34 33 fveq2d KHLWHXBYBocHKWIocKXmeetKocKY=ocHKWocHKWIXocHKWIY
35 hllat KHLKLat
36 35 ad2antrr KHLWHXBYBKLat
37 1 25 latmcl KLatocKXBocKYBocKXmeetKocKYB
38 36 22 24 37 syl3anc KHLWHXBYBocKXmeetKocKYB
39 1 20 3 4 15 dochvalr2 KHLWHocKXmeetKocKYBocHKWIocKXmeetKocKY=IocKocKXmeetKocKY
40 38 39 syldan KHLWHXBYBocHKWIocKXmeetKocKY=IocKocKXmeetKocKY
41 34 40 eqtr3d KHLWHXBYBocHKWocHKWIXocHKWIY=IocKocKXmeetKocKY
42 hlol KHLKOL
43 42 ad2antrr KHLWHXBYBKOL
44 1 2 25 20 oldmm4 KOLXBYBocKocKXmeetKocKY=X˙Y
45 43 7 12 44 syl3anc KHLWHXBYBocKocKXmeetKocKY=X˙Y
46 45 fveq2d KHLWHXBYBIocKocKXmeetKocKY=IX˙Y
47 17 41 46 3eqtrrd KHLWHXBYBIX˙Y=IXJIY