| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djhlj.b |  | 
						
							| 2 |  | djhlj.k |  | 
						
							| 3 |  | djhlj.h |  | 
						
							| 4 |  | djhlj.i |  | 
						
							| 5 |  | djhlj.j |  | 
						
							| 6 |  | simpl |  | 
						
							| 7 |  | simprl |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 3 4 8 9 | dihss |  | 
						
							| 11 | 7 10 | syldan |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 | 1 3 4 8 9 | dihss |  | 
						
							| 14 | 12 13 | syldan |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 3 8 9 15 5 | djhval |  | 
						
							| 17 | 6 11 14 16 | syl12anc |  | 
						
							| 18 |  | hlop |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 1 20 | opoccl |  | 
						
							| 22 | 19 7 21 | syl2anc |  | 
						
							| 23 | 1 20 | opoccl |  | 
						
							| 24 | 19 12 23 | syl2anc |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 25 3 4 | dihmeet |  | 
						
							| 27 | 6 22 24 26 | syl3anc |  | 
						
							| 28 | 1 20 3 4 15 | dochvalr2 |  | 
						
							| 29 | 7 28 | syldan |  | 
						
							| 30 | 1 20 3 4 15 | dochvalr2 |  | 
						
							| 31 | 12 30 | syldan |  | 
						
							| 32 | 29 31 | ineq12d |  | 
						
							| 33 | 27 32 | eqtr4d |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 |  | hllat |  | 
						
							| 36 | 35 | ad2antrr |  | 
						
							| 37 | 1 25 | latmcl |  | 
						
							| 38 | 36 22 24 37 | syl3anc |  | 
						
							| 39 | 1 20 3 4 15 | dochvalr2 |  | 
						
							| 40 | 38 39 | syldan |  | 
						
							| 41 | 34 40 | eqtr3d |  | 
						
							| 42 |  | hlol |  | 
						
							| 43 | 42 | ad2antrr |  | 
						
							| 44 | 1 2 25 20 | oldmm4 |  | 
						
							| 45 | 43 7 12 44 | syl3anc |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 17 41 46 | 3eqtrrd |  |