Metamath Proof Explorer


Theorem dnibndlem9

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem9.1 T=xx+12x
dnibndlem9.2 φA
dnibndlem9.3 φB
dnibndlem9.4 φB+12=A+12+1
Assertion dnibndlem9 φTBTABA

Proof

Step Hyp Ref Expression
1 dnibndlem9.1 T=xx+12x
2 dnibndlem9.2 φA
3 dnibndlem9.3 φB
4 dnibndlem9.4 φB+12=A+12+1
5 3 dnicld1 φB+12B
6 5 recnd φB+12B
7 2 dnicld1 φA+12A
8 7 recnd φA+12A
9 6 8 subcld φB+12BA+12A
10 9 abscld φB+12BA+12A
11 halfre 12
12 11 a1i φ12
13 12 5 jca φ12B+12B
14 resubcl 12B+12B12B+12B
15 13 14 syl φ12B+12B
16 12 7 jca φ12A+12A
17 resubcl 12A+12A12A+12A
18 16 17 syl φ12A+12A
19 15 18 readdcld φ12B+12B+12-A+12A
20 3 recnd φB
21 3 12 readdcld φB+12
22 reflcl B+12B+12
23 21 22 syl φB+12
24 23 recnd φB+12
25 12 recnd φ12
26 24 25 subcld φB+1212
27 20 26 subcld φBB+1212
28 2 12 readdcld φA+12
29 reflcl A+12A+12
30 28 29 syl φA+12
31 30 recnd φA+12
32 31 25 addcld φA+12+12
33 2 recnd φA
34 32 33 subcld φA+12+12-A
35 27 34 addcld φBB+1212+A+12+12-A
36 35 abscld φBB+1212+A+12+12-A
37 2 3 dnibndlem6 φB+12BA+12A12B+12B+12-A+12A
38 23 12 jca φB+1212
39 resubcl B+1212B+1212
40 38 39 syl φB+1212
41 3 40 jca φBB+1212
42 resubcl BB+1212BB+1212
43 41 42 syl φBB+1212
44 30 12 readdcld φA+12+12
45 44 2 jca φA+12+12A
46 resubcl A+12+12AA+12+12-A
47 45 46 syl φA+12+12-A
48 3 dnibndlem7 φ12B+12BBB+1212
49 2 dnibndlem8 φ12A+12AA+12+12-A
50 15 18 43 47 48 49 le2addd φ12B+12B+12-A+12ABB+1212+A+12+12-A
51 43 47 readdcld φBB+1212+A+12+12-A
52 dnibndlem4 B0BB+1212
53 3 52 syl φ0BB+1212
54 0red φ0
55 dnibndlem5 A0<A+12+12-A
56 2 55 syl φ0<A+12+12-A
57 54 47 56 ltled φ0A+12+12-A
58 43 47 53 57 addge0d φ0BB+1212+A+12+12-A
59 51 58 absidd φBB+1212+A+12+12-A=BB+1212+A+12+12-A
60 59 eqcomd φBB+1212+A+12+12-A=BB+1212+A+12+12-A
61 50 60 breqtrd φ12B+12B+12-A+12ABB+1212+A+12+12-A
62 10 19 36 37 61 letrd φB+12BA+12ABB+1212+A+12+12-A
63 1 2 3 4 dnibndlem3 φBA=BB+1212+A+12+12-A
64 63 eqcomd φBB+1212+A+12+12-A=BA
65 62 64 breqtrd φB+12BA+12ABA
66 1 2 3 dnibndlem1 φTBTABAB+12BA+12ABA
67 65 66 mpbird φTBTABA