Description: Lemma for dochexmid . The contradiction of dochexmidlem6 and dochexmidlem7 shows that there can be no atom p that is not in X + ( ._|_X ) , which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochexmidlem1.h | |
|
dochexmidlem1.o | |
||
dochexmidlem1.u | |
||
dochexmidlem1.v | |
||
dochexmidlem1.s | |
||
dochexmidlem1.n | |
||
dochexmidlem1.p | |
||
dochexmidlem1.a | |
||
dochexmidlem1.k | |
||
dochexmidlem1.x | |
||
dochexmidlem8.z | |
||
dochexmidlem8.xn | |
||
dochexmidlem8.c | |
||
Assertion | dochexmidlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem1.h | |
|
2 | dochexmidlem1.o | |
|
3 | dochexmidlem1.u | |
|
4 | dochexmidlem1.v | |
|
5 | dochexmidlem1.s | |
|
6 | dochexmidlem1.n | |
|
7 | dochexmidlem1.p | |
|
8 | dochexmidlem1.a | |
|
9 | dochexmidlem1.k | |
|
10 | dochexmidlem1.x | |
|
11 | dochexmidlem8.z | |
|
12 | dochexmidlem8.xn | |
|
13 | dochexmidlem8.c | |
|
14 | nonconne | |
|
15 | 1 3 9 | dvhlmod | |
16 | 4 5 | lssss | |
17 | 10 16 | syl | |
18 | 1 3 4 5 2 | dochlss | |
19 | 9 17 18 | syl2anc | |
20 | 5 7 | lsmcl | |
21 | 15 10 19 20 | syl3anc | |
22 | 4 5 | lssss | |
23 | 21 22 | syl | |
24 | 15 | adantr | |
25 | 21 | adantr | |
26 | 4 5 | lss1 | |
27 | 15 26 | syl | |
28 | 27 | adantr | |
29 | df-pss | |
|
30 | 29 | biimpri | |
31 | 30 | adantl | |
32 | 5 8 24 25 28 31 | lpssat | |
33 | 32 | ex | |
34 | 9 | 3ad2ant1 | |
35 | 10 | 3ad2ant1 | |
36 | simp2 | |
|
37 | eqid | |
|
38 | 12 | 3ad2ant1 | |
39 | 13 | 3ad2ant1 | |
40 | simp3 | |
|
41 | 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 | dochexmidlem6 | |
42 | 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 | dochexmidlem7 | |
43 | 41 42 | pm2.21ddne | |
44 | 43 | 3adant3l | |
45 | 44 | rexlimdv3a | |
46 | 33 45 | syld | |
47 | 23 46 | mpand | |
48 | 47 | necon1bd | |
49 | 14 48 | mpi | |