Metamath Proof Explorer


Theorem dochexmidlem8

Description: Lemma for dochexmid . The contradiction of dochexmidlem6 and dochexmidlem7 shows that there can be no atom p that is not in X + ( ._|_X ) , which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem8.z 0˙=0U
dochexmidlem8.xn φX0˙
dochexmidlem8.c φ˙˙X=X
Assertion dochexmidlem8 φX˙˙X=V

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem8.z 0˙=0U
12 dochexmidlem8.xn φX0˙
13 dochexmidlem8.c φ˙˙X=X
14 nonconne ¬X=XXX
15 1 3 9 dvhlmod φULMod
16 4 5 lssss XSXV
17 10 16 syl φXV
18 1 3 4 5 2 dochlss KHLWHXV˙XS
19 9 17 18 syl2anc φ˙XS
20 5 7 lsmcl ULModXS˙XSX˙˙XS
21 15 10 19 20 syl3anc φX˙˙XS
22 4 5 lssss X˙˙XSX˙˙XV
23 21 22 syl φX˙˙XV
24 15 adantr φX˙˙XVX˙˙XVULMod
25 21 adantr φX˙˙XVX˙˙XVX˙˙XS
26 4 5 lss1 ULModVS
27 15 26 syl φVS
28 27 adantr φX˙˙XVX˙˙XVVS
29 df-pss X˙˙XVX˙˙XVX˙˙XV
30 29 biimpri X˙˙XVX˙˙XVX˙˙XV
31 30 adantl φX˙˙XVX˙˙XVX˙˙XV
32 5 8 24 25 28 31 lpssat φX˙˙XVX˙˙XVpApV¬pX˙˙X
33 32 ex φX˙˙XVX˙˙XVpApV¬pX˙˙X
34 9 3ad2ant1 φpA¬pX˙˙XKHLWH
35 10 3ad2ant1 φpA¬pX˙˙XXS
36 simp2 φpA¬pX˙˙XpA
37 eqid X˙p=X˙p
38 12 3ad2ant1 φpA¬pX˙˙XX0˙
39 13 3ad2ant1 φpA¬pX˙˙X˙˙X=X
40 simp3 φpA¬pX˙˙X¬pX˙˙X
41 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 dochexmidlem6 φpA¬pX˙˙XX˙p=X
42 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 dochexmidlem7 φpA¬pX˙˙XX˙pX
43 41 42 pm2.21ddne φpA¬pX˙˙XX=XXX
44 43 3adant3l φpApV¬pX˙˙XX=XXX
45 44 rexlimdv3a φpApV¬pX˙˙XX=XXX
46 33 45 syld φX˙˙XVX˙˙XVX=XXX
47 23 46 mpand φX˙˙XVX=XXX
48 47 necon1bd φ¬X=XXXX˙˙X=V
49 14 48 mpi φX˙˙X=V