| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dprdsplit.2 |  | 
						
							| 2 |  | dprdsplit.i |  | 
						
							| 3 |  | dprdsplit.u |  | 
						
							| 4 |  | dprdsplit.s |  | 
						
							| 5 |  | dprdsplit.1 |  | 
						
							| 6 | 1 | fdmd |  | 
						
							| 7 |  | ssun1 |  | 
						
							| 8 | 7 3 | sseqtrrid |  | 
						
							| 9 | 5 6 8 | dprdres |  | 
						
							| 10 | 9 | simpld |  | 
						
							| 11 |  | dprdsubg |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | ssun2 |  | 
						
							| 14 | 13 3 | sseqtrrid |  | 
						
							| 15 | 5 6 14 | dprdres |  | 
						
							| 16 | 15 | simpld |  | 
						
							| 17 |  | dprdsubg |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 1 2 3 19 20 | dmdprdsplit |  | 
						
							| 22 | 5 21 | mpbid |  | 
						
							| 23 | 22 | simp2d |  | 
						
							| 24 | 4 19 | lsmsubg |  | 
						
							| 25 | 12 18 23 24 | syl3anc |  | 
						
							| 26 | 3 | eleq2d |  | 
						
							| 27 |  | elun |  | 
						
							| 28 | 26 27 | bitrdi |  | 
						
							| 29 | 28 | biimpa |  | 
						
							| 30 |  | fvres |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 10 | adantr |  | 
						
							| 33 | 1 8 | fssresd |  | 
						
							| 34 | 33 | fdmd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 32 35 36 | dprdub |  | 
						
							| 38 | 31 37 | eqsstrrd |  | 
						
							| 39 | 4 | lsmub1 |  | 
						
							| 40 | 12 18 39 | syl2anc |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 38 41 | sstrd |  | 
						
							| 43 |  | fvres |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 | 16 | adantr |  | 
						
							| 46 | 1 14 | fssresd |  | 
						
							| 47 | 46 | fdmd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 45 48 49 | dprdub |  | 
						
							| 51 | 44 50 | eqsstrrd |  | 
						
							| 52 | 4 | lsmub2 |  | 
						
							| 53 | 12 18 52 | syl2anc |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 51 54 | sstrd |  | 
						
							| 56 | 42 55 | jaodan |  | 
						
							| 57 | 29 56 | syldan |  | 
						
							| 58 | 5 6 25 57 | dprdlub |  | 
						
							| 59 | 9 | simprd |  | 
						
							| 60 | 15 | simprd |  | 
						
							| 61 |  | dprdsubg |  | 
						
							| 62 | 5 61 | syl |  | 
						
							| 63 | 4 | lsmlub |  | 
						
							| 64 | 12 18 62 63 | syl3anc |  | 
						
							| 65 | 59 60 64 | mpbi2and |  | 
						
							| 66 | 58 65 | eqssd |  |