Metamath Proof Explorer


Theorem drngidlhash

Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypothesis drngidlhash.u U=LIdealR
Assertion drngidlhash RRingRDivRingU=2

Proof

Step Hyp Ref Expression
1 drngidlhash.u U=LIdealR
2 eqid BaseR=BaseR
3 eqid 0R=0R
4 2 3 1 drngnidl RDivRingU=0RBaseR
5 4 fveq2d RDivRingU=0RBaseR
6 drngnzr RDivRingRNzRing
7 nzrring RNzRingRRing
8 eqid 1R=1R
9 2 8 ringidcl RRing1RBaseR
10 7 9 syl RNzRing1RBaseR
11 8 3 nzrnz RNzRing1R0R
12 nelsn 1R0R¬1R0R
13 11 12 syl RNzRing¬1R0R
14 nelne1 1RBaseR¬1R0RBaseR0R
15 10 13 14 syl2anc RNzRingBaseR0R
16 15 necomd RNzRing0RBaseR
17 6 16 syl RDivRing0RBaseR
18 snex 0RV
19 fvex BaseRV
20 hashprg 0RVBaseRV0RBaseR0RBaseR=2
21 18 19 20 mp2an 0RBaseR0RBaseR=2
22 17 21 sylib RDivRing0RBaseR=2
23 5 22 eqtrd RDivRingU=2
24 23 adantl RRingRDivRingU=2
25 simpl RRingU=2RRing
26 simplr RRingU=20R=BaseRU=2
27 2re 2
28 26 27 eqeltrdi RRingU=20R=BaseRU
29 simpl RRing0R=BaseRRRing
30 simpr RRing0R=BaseR0R=BaseR
31 30 fveq2d RRing0R=BaseR0R=BaseR
32 fvex 0RV
33 hashsng 0RV0R=1
34 32 33 ax-mp 0R=1
35 31 34 eqtr3di RRing0R=BaseRBaseR=1
36 2 3 0ringidl RRingBaseR=1LIdealR=0R
37 29 35 36 syl2anc RRing0R=BaseRLIdealR=0R
38 1 37 eqtrid RRing0R=BaseRU=0R
39 38 fveq2d RRing0R=BaseRU=0R
40 hashsng 0RV0R=1
41 18 40 ax-mp 0R=1
42 39 41 eqtrdi RRing0R=BaseRU=1
43 42 adantlr RRingU=20R=BaseRU=1
44 1lt2 1<2
45 43 44 eqbrtrdi RRingU=20R=BaseRU<2
46 28 45 ltned RRingU=20R=BaseRU2
47 46 neneqd RRingU=20R=BaseR¬U=2
48 26 47 pm2.65da RRingU=2¬0R=BaseR
49 48 neqned RRingU=20RBaseR
50 2 3 8 01eq0ring RRing0R=1RBaseR=0R
51 50 eqcomd RRing0R=1R0R=BaseR
52 51 ex RRing0R=1R0R=BaseR
53 52 necon3d RRing0RBaseR0R1R
54 25 49 53 sylc RRingU=20R1R
55 54 necomd RRingU=21R0R
56 8 3 isnzr RNzRingRRing1R0R
57 25 55 56 sylanbrc RRingU=2RNzRing
58 1 fvexi UV
59 58 a1i RRingU=2UV
60 simpr RRingU=2U=2
61 1 3 lidl0 RRing0RU
62 25 61 syl RRingU=20RU
63 1 2 lidl1 RRingBaseRU
64 25 63 syl RRingU=2BaseRU
65 hash2prd UVU=20RUBaseRU0RBaseRU=0RBaseR
66 65 imp UVU=20RUBaseRU0RBaseRU=0RBaseR
67 59 60 62 64 49 66 syl23anc RRingU=2U=0RBaseR
68 2 3 1 drngidl RNzRingRDivRingU=0RBaseR
69 68 biimpar RNzRingU=0RBaseRRDivRing
70 57 67 69 syl2anc RRingU=2RDivRing
71 24 70 impbida RRingRDivRingU=2