Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | drngidlhash.u | |
|
Assertion | drngidlhash | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngidlhash.u | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 1 | drngnidl | |
5 | 4 | fveq2d | |
6 | drngnzr | |
|
7 | nzrring | |
|
8 | eqid | |
|
9 | 2 8 | ringidcl | |
10 | 7 9 | syl | |
11 | 8 3 | nzrnz | |
12 | nelsn | |
|
13 | 11 12 | syl | |
14 | nelne1 | |
|
15 | 10 13 14 | syl2anc | |
16 | 15 | necomd | |
17 | 6 16 | syl | |
18 | snex | |
|
19 | fvex | |
|
20 | hashprg | |
|
21 | 18 19 20 | mp2an | |
22 | 17 21 | sylib | |
23 | 5 22 | eqtrd | |
24 | 23 | adantl | |
25 | simpl | |
|
26 | simplr | |
|
27 | 2re | |
|
28 | 26 27 | eqeltrdi | |
29 | simpl | |
|
30 | simpr | |
|
31 | 30 | fveq2d | |
32 | fvex | |
|
33 | hashsng | |
|
34 | 32 33 | ax-mp | |
35 | 31 34 | eqtr3di | |
36 | 2 3 | 0ringidl | |
37 | 29 35 36 | syl2anc | |
38 | 1 37 | eqtrid | |
39 | 38 | fveq2d | |
40 | hashsng | |
|
41 | 18 40 | ax-mp | |
42 | 39 41 | eqtrdi | |
43 | 42 | adantlr | |
44 | 1lt2 | |
|
45 | 43 44 | eqbrtrdi | |
46 | 28 45 | ltned | |
47 | 46 | neneqd | |
48 | 26 47 | pm2.65da | |
49 | 48 | neqned | |
50 | 2 3 8 | 01eq0ring | |
51 | 50 | eqcomd | |
52 | 51 | ex | |
53 | 52 | necon3d | |
54 | 25 49 53 | sylc | |
55 | 54 | necomd | |
56 | 8 3 | isnzr | |
57 | 25 55 56 | sylanbrc | |
58 | 1 | fvexi | |
59 | 58 | a1i | |
60 | simpr | |
|
61 | 1 3 | lidl0 | |
62 | 25 61 | syl | |
63 | 1 2 | lidl1 | |
64 | 25 63 | syl | |
65 | hash2prd | |
|
66 | 65 | imp | |
67 | 59 60 62 64 49 66 | syl23anc | |
68 | 2 3 1 | drngidl | |
69 | 68 | biimpar | |
70 | 57 67 69 | syl2anc | |
71 | 24 70 | impbida | |