Metamath Proof Explorer


Theorem dstfrvunirn

Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
Assertion dstfrvunirn φrannXRV/cn=domP

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 1red φxdomP1
4 1 2 rrvvf φX:domP
5 4 ffvelcdmda φxdomPXx
6 3 5 ifcld φxdomPifXx<11Xx
7 breq2 1=ifXx<11Xx111ifXx<11Xx
8 breq2 Xx=ifXx<11Xx1Xx1ifXx<11Xx
9 1le1 11
10 9 a1i φxdomPXx<111
11 3 5 lenltd φxdomP1Xx¬Xx<1
12 11 biimpar φxdomP¬Xx<11Xx
13 7 8 10 12 ifbothda φxdomP1ifXx<11Xx
14 flge1nn ifXx<11Xx1ifXx<11XxifXx<11Xx
15 6 13 14 syl2anc φxdomPifXx<11Xx
16 15 peano2nnd φxdomPifXx<11Xx+1
17 1 adantr φxdomPPProb
18 2 adantr φxdomPXRndVarP
19 16 nnred φxdomPifXx<11Xx+1
20 simpr φxdomPxdomP
21 breq2 1=ifXx<11XxXx1XxifXx<11Xx
22 breq2 Xx=ifXx<11XxXxXxXxifXx<11Xx
23 5 adantr φxdomPXx<1Xx
24 1red φxdomPXx<11
25 simpr φxdomPXx<1Xx<1
26 23 24 25 ltled φxdomPXx<1Xx1
27 5 leidd φxdomPXxXx
28 27 adantr φxdomP¬Xx<1XxXx
29 21 22 26 28 ifbothda φxdomPXxifXx<11Xx
30 fllep1 ifXx<11XxifXx<11XxifXx<11Xx+1
31 6 30 syl φxdomPifXx<11XxifXx<11Xx+1
32 5 6 19 29 31 letrd φxdomPXxifXx<11Xx+1
33 17 18 19 20 32 dstfrvel φxdomPxXRV/cifXx<11Xx+1
34 oveq2 n=ifXx<11Xx+1XRV/cn=XRV/cifXx<11Xx+1
35 34 eleq2d n=ifXx<11Xx+1xXRV/cnxXRV/cifXx<11Xx+1
36 35 rspcev ifXx<11Xx+1xXRV/cifXx<11Xx+1nxXRV/cn
37 16 33 36 syl2anc φxdomPnxXRV/cn
38 37 ex φxdomPnxXRV/cn
39 1 adantr φnPProb
40 2 adantr φnXRndVarP
41 simpr φnn
42 41 nnred φnn
43 39 40 42 orvclteel φnXRV/cndomP
44 elunii xXRV/cnXRV/cndomPxdomP
45 44 expcom XRV/cndomPxXRV/cnxdomP
46 43 45 syl φnxXRV/cnxdomP
47 46 rexlimdva φnxXRV/cnxdomP
48 38 47 impbid φxdomPnxXRV/cn
49 eliun xnXRV/cnnxXRV/cn
50 48 49 bitr4di φxdomPxnXRV/cn
51 50 eqrdv φdomP=nXRV/cn
52 ovex XRV/cnV
53 52 dfiun3 nXRV/cn=rannXRV/cn
54 51 53 eqtr2di φrannXRV/cn=domP