Metamath Proof Explorer


Theorem dvcj

Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvcj F:XXD*F=*F

Proof

Step Hyp Ref Expression
1 dvf *F:dom*F
2 ffun *F:dom*FFun*F
3 1 2 ax-mp Fun*F
4 simpll F:XXxdomFF:X
5 simplr F:XXxdomFX
6 simpr F:XXxdomFxdomF
7 4 5 6 dvcjbr F:XXxdomFx*FFx
8 funbrfv Fun*Fx*FFx*Fx=Fx
9 3 7 8 mpsyl F:XXxdomF*Fx=Fx
10 9 mpteq2dva F:XXxdomF*Fx=xdomFFx
11 cjf *:
12 fco *:F:X*F:X
13 11 12 mpan F:X*F:X
14 13 ad2antrr F:XXxdom*F*F:X
15 simplr F:XXxdom*FX
16 simpr F:XXxdom*Fxdom*F
17 14 15 16 dvcjbr F:XXxdom*Fx**F*Fx
18 vex xV
19 fvex *FxV
20 18 19 breldm x**F*Fxxdom**F
21 17 20 syl F:XXxdom*Fxdom**F
22 21 ex F:XXxdom*Fxdom**F
23 22 ssrdv F:XXdom*Fdom**F
24 ffvelcdm F:XxXFx
25 24 adantlr F:XXxXFx
26 25 cjcjd F:XXxXFx=Fx
27 26 mpteq2dva F:XXxXFx=xXFx
28 25 cjcld F:XXxXFx
29 simpl F:XXF:X
30 29 feqmptd F:XXF=xXFx
31 11 a1i F:XX*:
32 31 feqmptd F:XX*=yy
33 fveq2 y=Fxy=Fx
34 25 30 32 33 fmptco F:XX*F=xXFx
35 fveq2 y=Fxy=Fx
36 28 34 32 35 fmptco F:XX**F=xXFx
37 27 36 30 3eqtr4d F:XX**F=F
38 37 oveq2d F:XXD**F=DF
39 38 dmeqd F:XXdom**F=domF
40 23 39 sseqtrd F:XXdom*FdomF
41 fvex FxV
42 18 41 breldm x*FFxxdom*F
43 7 42 syl F:XXxdomFxdom*F
44 40 43 eqelssd F:XXdom*F=domF
45 44 feq2d F:XX*F:dom*F*F:domF
46 1 45 mpbii F:XX*F:domF
47 46 feqmptd F:XXD*F=xdomF*Fx
48 dvf F:domF
49 48 ffvelcdmi xdomFFx
50 49 adantl F:XXxdomFFx
51 48 a1i F:XXF:domF
52 51 feqmptd F:XXDF=xdomFFx
53 fveq2 y=Fxy=Fx
54 50 52 32 53 fmptco F:XX*F=xdomFFx
55 10 47 54 3eqtr4d F:XXD*F=*F