Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dvdsppwf1o.f | |
|
Assertion | dvdsppwf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsppwf1o.f | |
|
2 | breq1 | |
|
3 | prmnn | |
|
4 | 3 | adantr | |
5 | elfznn0 | |
|
6 | nnexpcl | |
|
7 | 4 5 6 | syl2an | |
8 | prmz | |
|
9 | 8 | ad2antrr | |
10 | 5 | adantl | |
11 | elfzuz3 | |
|
12 | 11 | adantl | |
13 | dvdsexp | |
|
14 | 9 10 12 13 | syl3anc | |
15 | 2 7 14 | elrabd | |
16 | simpl | |
|
17 | elrabi | |
|
18 | pccl | |
|
19 | 16 17 18 | syl2an | |
20 | 16 | adantr | |
21 | 17 | adantl | |
22 | 21 | nnzd | |
23 | 8 | ad2antrr | |
24 | simplr | |
|
25 | zexpcl | |
|
26 | 23 24 25 | syl2anc | |
27 | breq1 | |
|
28 | 27 | elrab | |
29 | 28 | simprbi | |
30 | 29 | adantl | |
31 | pcdvdstr | |
|
32 | 20 22 26 30 31 | syl13anc | |
33 | pcidlem | |
|
34 | 33 | adantr | |
35 | 32 34 | breqtrd | |
36 | fznn0 | |
|
37 | 24 36 | syl | |
38 | 19 35 37 | mpbir2and | |
39 | oveq2 | |
|
40 | 39 | breq2d | |
41 | 40 | rspcev | |
42 | 24 30 41 | syl2anc | |
43 | pcprmpw2 | |
|
44 | 16 17 43 | syl2an | |
45 | 42 44 | mpbid | |
46 | 45 | adantrl | |
47 | oveq2 | |
|
48 | 47 | eqeq2d | |
49 | 46 48 | syl5ibrcom | |
50 | elfzelz | |
|
51 | pcid | |
|
52 | 16 50 51 | syl2an | |
53 | 52 | eqcomd | |
54 | 53 | adantrr | |
55 | oveq2 | |
|
56 | 55 | eqeq2d | |
57 | 54 56 | syl5ibrcom | |
58 | 49 57 | impbid | |
59 | 1 15 38 58 | f1o2d | |