Metamath Proof Explorer


Theorem dvdsppwf1o

Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypothesis dvdsppwf1o.f F=n0APn
Assertion dvdsppwf1o PA0F:0A1-1 ontox|xPA

Proof

Step Hyp Ref Expression
1 dvdsppwf1o.f F=n0APn
2 breq1 x=PnxPAPnPA
3 prmnn PP
4 3 adantr PA0P
5 elfznn0 n0An0
6 nnexpcl Pn0Pn
7 4 5 6 syl2an PA0n0APn
8 prmz PP
9 8 ad2antrr PA0n0AP
10 5 adantl PA0n0An0
11 elfzuz3 n0AAn
12 11 adantl PA0n0AAn
13 dvdsexp Pn0AnPnPA
14 9 10 12 13 syl3anc PA0n0APnPA
15 2 7 14 elrabd PA0n0APnx|xPA
16 simpl PA0P
17 elrabi mx|xPAm
18 pccl PmPpCntm0
19 16 17 18 syl2an PA0mx|xPAPpCntm0
20 16 adantr PA0mx|xPAP
21 17 adantl PA0mx|xPAm
22 21 nnzd PA0mx|xPAm
23 8 ad2antrr PA0mx|xPAP
24 simplr PA0mx|xPAA0
25 zexpcl PA0PA
26 23 24 25 syl2anc PA0mx|xPAPA
27 breq1 x=mxPAmPA
28 27 elrab mx|xPAmmPA
29 28 simprbi mx|xPAmPA
30 29 adantl PA0mx|xPAmPA
31 pcdvdstr PmPAmPAPpCntmPpCntPA
32 20 22 26 30 31 syl13anc PA0mx|xPAPpCntmPpCntPA
33 pcidlem PA0PpCntPA=A
34 33 adantr PA0mx|xPAPpCntPA=A
35 32 34 breqtrd PA0mx|xPAPpCntmA
36 fznn0 A0PpCntm0APpCntm0PpCntmA
37 24 36 syl PA0mx|xPAPpCntm0APpCntm0PpCntmA
38 19 35 37 mpbir2and PA0mx|xPAPpCntm0A
39 oveq2 n=APn=PA
40 39 breq2d n=AmPnmPA
41 40 rspcev A0mPAn0mPn
42 24 30 41 syl2anc PA0mx|xPAn0mPn
43 pcprmpw2 Pmn0mPnm=PPpCntm
44 16 17 43 syl2an PA0mx|xPAn0mPnm=PPpCntm
45 42 44 mpbid PA0mx|xPAm=PPpCntm
46 45 adantrl PA0n0Amx|xPAm=PPpCntm
47 oveq2 n=PpCntmPn=PPpCntm
48 47 eqeq2d n=PpCntmm=Pnm=PPpCntm
49 46 48 syl5ibrcom PA0n0Amx|xPAn=PpCntmm=Pn
50 elfzelz n0An
51 pcid PnPpCntPn=n
52 16 50 51 syl2an PA0n0APpCntPn=n
53 52 eqcomd PA0n0An=PpCntPn
54 53 adantrr PA0n0Amx|xPAn=PpCntPn
55 oveq2 m=PnPpCntm=PpCntPn
56 55 eqeq2d m=Pnn=PpCntmn=PpCntPn
57 54 56 syl5ibrcom PA0n0Amx|xPAm=Pnn=PpCntm
58 49 57 impbid PA0n0Amx|xPAn=PpCntmm=Pn
59 1 15 38 58 f1o2d PA0F:0A1-1 ontox|xPA