| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dveq0.a |
|
| 2 |
|
dveq0.b |
|
| 3 |
|
dveq0.c |
|
| 4 |
|
dveq0.d |
|
| 5 |
|
cncff |
|
| 6 |
3 5
|
syl |
|
| 7 |
6
|
ffnd |
|
| 8 |
|
fvex |
|
| 9 |
|
fnconstg |
|
| 10 |
8 9
|
mp1i |
|
| 11 |
8
|
fvconst2 |
|
| 12 |
11
|
adantl |
|
| 13 |
6
|
adantr |
|
| 14 |
1
|
adantr |
|
| 15 |
14
|
rexrd |
|
| 16 |
2
|
adantr |
|
| 17 |
16
|
rexrd |
|
| 18 |
|
elicc2 |
|
| 19 |
1 2 18
|
syl2anc |
|
| 20 |
19
|
biimpa |
|
| 21 |
20
|
simp1d |
|
| 22 |
20
|
simp2d |
|
| 23 |
20
|
simp3d |
|
| 24 |
14 21 16 22 23
|
letrd |
|
| 25 |
|
lbicc2 |
|
| 26 |
15 17 24 25
|
syl3anc |
|
| 27 |
13 26
|
ffvelcdmd |
|
| 28 |
6
|
ffvelcdmda |
|
| 29 |
27 28
|
subcld |
|
| 30 |
|
simpr |
|
| 31 |
26 30
|
jca |
|
| 32 |
4
|
dmeqd |
|
| 33 |
|
c0ex |
|
| 34 |
33
|
snnz |
|
| 35 |
|
dmxp |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
32 36
|
eqtrdi |
|
| 38 |
|
0red |
|
| 39 |
4
|
fveq1d |
|
| 40 |
33
|
fvconst2 |
|
| 41 |
39 40
|
sylan9eq |
|
| 42 |
41
|
abs00bd |
|
| 43 |
|
0le0 |
|
| 44 |
42 43
|
eqbrtrdi |
|
| 45 |
1 2 3 37 38 44
|
dvlip |
|
| 46 |
31 45
|
syldan |
|
| 47 |
14
|
recnd |
|
| 48 |
21
|
recnd |
|
| 49 |
47 48
|
subcld |
|
| 50 |
49
|
abscld |
|
| 51 |
50
|
recnd |
|
| 52 |
51
|
mul02d |
|
| 53 |
46 52
|
breqtrd |
|
| 54 |
29
|
absge0d |
|
| 55 |
29
|
abscld |
|
| 56 |
|
0re |
|
| 57 |
|
letri3 |
|
| 58 |
55 56 57
|
sylancl |
|
| 59 |
53 54 58
|
mpbir2and |
|
| 60 |
29 59
|
abs00d |
|
| 61 |
27 28 60
|
subeq0d |
|
| 62 |
12 61
|
eqtr2d |
|
| 63 |
7 10 62
|
eqfnfvd |
|