Metamath Proof Explorer


Theorem dvle

Description: If A ( x ) , C ( x ) are differentiable functions and A<_ C` , then for x <_ y , A ( y ) - A ( x ) <_ C ( y ) - C ( x ) ` . (Contributed by Mario Carneiro, 16-May-2016)

Ref Expression
Hypotheses dvle.m φM
dvle.n φN
dvle.a φxMNA:MNcn
dvle.b φdxMNAdx=xMNB
dvle.c φxMNC:MNcn
dvle.d φdxMNCdx=xMND
dvle.f φxMNBD
dvle.x φXMN
dvle.y φYMN
dvle.l φXY
dvle.p x=XA=P
dvle.q x=XC=Q
dvle.r x=YA=R
dvle.s x=YC=S
Assertion dvle φRPSQ

Proof

Step Hyp Ref Expression
1 dvle.m φM
2 dvle.n φN
3 dvle.a φxMNA:MNcn
4 dvle.b φdxMNAdx=xMNB
5 dvle.c φxMNC:MNcn
6 dvle.d φdxMNCdx=xMND
7 dvle.f φxMNBD
8 dvle.x φXMN
9 dvle.y φYMN
10 dvle.l φXY
11 dvle.p x=XA=P
12 dvle.q x=XC=Q
13 dvle.r x=YA=R
14 dvle.s x=YC=S
15 13 eleq1d x=YAR
16 cncff xMNA:MNcnxMNA:MN
17 3 16 syl φxMNA:MN
18 eqid xMNA=xMNA
19 18 fmpt xMNAxMNA:MN
20 17 19 sylibr φxMNA
21 15 20 9 rspcdva φR
22 14 eleq1d x=YCS
23 cncff xMNC:MNcnxMNC:MN
24 5 23 syl φxMNC:MN
25 eqid xMNC=xMNC
26 25 fmpt xMNCxMNC:MN
27 24 26 sylibr φxMNC
28 22 27 9 rspcdva φS
29 12 eleq1d x=XCQ
30 29 27 8 rspcdva φQ
31 28 30 resubcld φSQ
32 11 eleq1d x=XAP
33 32 20 8 rspcdva φP
34 21 recnd φR
35 30 recnd φQ
36 28 recnd φS
37 35 36 subcld φQS
38 34 37 addcomd φR+Q-S=Q-S+R
39 34 36 35 subsub2d φRSQ=R+Q-S
40 35 36 34 subsubd φQSR=Q-S+R
41 38 39 40 3eqtr4d φRSQ=QSR
42 28 21 resubcld φSR
43 eqid TopOpenfld=TopOpenfld
44 43 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
45 ax-resscn
46 resubcl CACA
47 43 44 5 3 45 46 cncfmpt2ss φxMNCA:MNcn
48 45 a1i φ
49 iccssre MNMN
50 1 2 49 syl2anc φMN
51 24 fvmptelcdm φxMNC
52 17 fvmptelcdm φxMNA
53 51 52 resubcld φxMNCA
54 53 recnd φxMNCA
55 43 tgioo2 topGenran.=TopOpenfld𝑡
56 iccntr MNinttopGenran.MN=MN
57 1 2 56 syl2anc φinttopGenran.MN=MN
58 48 50 54 55 43 57 dvmptntr φdxMNCAdx=dxMNCAdx
59 reelprrecn
60 59 a1i φ
61 ioossicc MNMN
62 61 sseli xMNxMN
63 51 recnd φxMNC
64 62 63 sylan2 φxMNC
65 lerel Rel
66 65 brrelex2i BDDV
67 7 66 syl φxMNDV
68 52 recnd φxMNA
69 62 68 sylan2 φxMNA
70 65 brrelex1i BDBV
71 7 70 syl φxMNBV
72 60 64 67 6 69 71 4 dvmptsub φdxMNCAdx=xMNDB
73 58 72 eqtrd φdxMNCAdx=xMNDB
74 62 51 sylan2 φxMNC
75 74 fmpttd φxMNC:MN
76 ioossre MN
77 dvfre xMNC:MNMNdxMNCdx:domdxMNCdx
78 75 76 77 sylancl φdxMNCdx:domdxMNCdx
79 6 dmeqd φdomdxMNCdx=domxMND
80 67 ralrimiva φxMNDV
81 dmmptg xMNDVdomxMND=MN
82 80 81 syl φdomxMND=MN
83 79 82 eqtrd φdomdxMNCdx=MN
84 6 83 feq12d φdxMNCdx:domdxMNCdxxMND:MN
85 78 84 mpbid φxMND:MN
86 85 fvmptelcdm φxMND
87 62 52 sylan2 φxMNA
88 87 fmpttd φxMNA:MN
89 dvfre xMNA:MNMNdxMNAdx:domdxMNAdx
90 88 76 89 sylancl φdxMNAdx:domdxMNAdx
91 4 dmeqd φdomdxMNAdx=domxMNB
92 71 ralrimiva φxMNBV
93 dmmptg xMNBVdomxMNB=MN
94 92 93 syl φdomxMNB=MN
95 91 94 eqtrd φdomdxMNAdx=MN
96 4 95 feq12d φdxMNAdx:domdxMNAdxxMNB:MN
97 90 96 mpbid φxMNB:MN
98 97 fvmptelcdm φxMNB
99 86 98 resubcld φxMNDB
100 86 98 subge0d φxMN0DBBD
101 7 100 mpbird φxMN0DB
102 elrege0 DB0+∞DB0DB
103 99 101 102 sylanbrc φxMNDB0+∞
104 73 103 fmpt3d φdxMNCAdx:MN0+∞
105 1 2 47 104 8 9 10 dvge0 φxMNCAXxMNCAY
106 12 11 oveq12d x=XCA=QP
107 eqid xMNCA=xMNCA
108 ovex CAV
109 106 107 108 fvmpt3i XMNxMNCAX=QP
110 8 109 syl φxMNCAX=QP
111 14 13 oveq12d x=YCA=SR
112 111 107 108 fvmpt3i YMNxMNCAY=SR
113 9 112 syl φxMNCAY=SR
114 105 110 113 3brtr3d φQPSR
115 30 33 42 114 subled φQSRP
116 41 115 eqbrtrd φRSQP
117 21 31 33 116 subled φRPSQ