Metamath Proof Explorer


Theorem dvle

Description: If A ( x ) , C ( x ) are differentiable functions and A<_ C` , then for x <_ y , A ( y ) - A ( x ) <_ C ( y ) - C ( x ) ` . (Contributed by Mario Carneiro, 16-May-2016)

Ref Expression
Hypotheses dvle.m φ M
dvle.n φ N
dvle.a φ x M N A : M N cn
dvle.b φ dx M N A d x = x M N B
dvle.c φ x M N C : M N cn
dvle.d φ dx M N C d x = x M N D
dvle.f φ x M N B D
dvle.x φ X M N
dvle.y φ Y M N
dvle.l φ X Y
dvle.p x = X A = P
dvle.q x = X C = Q
dvle.r x = Y A = R
dvle.s x = Y C = S
Assertion dvle φ R P S Q

Proof

Step Hyp Ref Expression
1 dvle.m φ M
2 dvle.n φ N
3 dvle.a φ x M N A : M N cn
4 dvle.b φ dx M N A d x = x M N B
5 dvle.c φ x M N C : M N cn
6 dvle.d φ dx M N C d x = x M N D
7 dvle.f φ x M N B D
8 dvle.x φ X M N
9 dvle.y φ Y M N
10 dvle.l φ X Y
11 dvle.p x = X A = P
12 dvle.q x = X C = Q
13 dvle.r x = Y A = R
14 dvle.s x = Y C = S
15 13 eleq1d x = Y A R
16 cncff x M N A : M N cn x M N A : M N
17 3 16 syl φ x M N A : M N
18 eqid x M N A = x M N A
19 18 fmpt x M N A x M N A : M N
20 17 19 sylibr φ x M N A
21 15 20 9 rspcdva φ R
22 14 eleq1d x = Y C S
23 cncff x M N C : M N cn x M N C : M N
24 5 23 syl φ x M N C : M N
25 eqid x M N C = x M N C
26 25 fmpt x M N C x M N C : M N
27 24 26 sylibr φ x M N C
28 22 27 9 rspcdva φ S
29 12 eleq1d x = X C Q
30 29 27 8 rspcdva φ Q
31 28 30 resubcld φ S Q
32 11 eleq1d x = X A P
33 32 20 8 rspcdva φ P
34 21 recnd φ R
35 30 recnd φ Q
36 28 recnd φ S
37 35 36 subcld φ Q S
38 34 37 addcomd φ R + Q - S = Q - S + R
39 34 36 35 subsub2d φ R S Q = R + Q - S
40 35 36 34 subsubd φ Q S R = Q - S + R
41 38 39 40 3eqtr4d φ R S Q = Q S R
42 28 21 resubcld φ S R
43 eqid TopOpen fld = TopOpen fld
44 43 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
45 ax-resscn
46 resubcl C A C A
47 43 44 5 3 45 46 cncfmpt2ss φ x M N C A : M N cn
48 45 a1i φ
49 iccssre M N M N
50 1 2 49 syl2anc φ M N
51 24 fvmptelrn φ x M N C
52 17 fvmptelrn φ x M N A
53 51 52 resubcld φ x M N C A
54 53 recnd φ x M N C A
55 43 tgioo2 topGen ran . = TopOpen fld 𝑡
56 iccntr M N int topGen ran . M N = M N
57 1 2 56 syl2anc φ int topGen ran . M N = M N
58 48 50 54 55 43 57 dvmptntr φ dx M N C A d x = dx M N C A d x
59 reelprrecn
60 59 a1i φ
61 ioossicc M N M N
62 61 sseli x M N x M N
63 51 recnd φ x M N C
64 62 63 sylan2 φ x M N C
65 lerel Rel
66 65 brrelex2i B D D V
67 7 66 syl φ x M N D V
68 52 recnd φ x M N A
69 62 68 sylan2 φ x M N A
70 65 brrelex1i B D B V
71 7 70 syl φ x M N B V
72 60 64 67 6 69 71 4 dvmptsub φ dx M N C A d x = x M N D B
73 58 72 eqtrd φ dx M N C A d x = x M N D B
74 62 51 sylan2 φ x M N C
75 74 fmpttd φ x M N C : M N
76 ioossre M N
77 dvfre x M N C : M N M N dx M N C d x : dom dx M N C d x
78 75 76 77 sylancl φ dx M N C d x : dom dx M N C d x
79 6 dmeqd φ dom dx M N C d x = dom x M N D
80 67 ralrimiva φ x M N D V
81 dmmptg x M N D V dom x M N D = M N
82 80 81 syl φ dom x M N D = M N
83 79 82 eqtrd φ dom dx M N C d x = M N
84 6 83 feq12d φ dx M N C d x : dom dx M N C d x x M N D : M N
85 78 84 mpbid φ x M N D : M N
86 85 fvmptelrn φ x M N D
87 62 52 sylan2 φ x M N A
88 87 fmpttd φ x M N A : M N
89 dvfre x M N A : M N M N dx M N A d x : dom dx M N A d x
90 88 76 89 sylancl φ dx M N A d x : dom dx M N A d x
91 4 dmeqd φ dom dx M N A d x = dom x M N B
92 71 ralrimiva φ x M N B V
93 dmmptg x M N B V dom x M N B = M N
94 92 93 syl φ dom x M N B = M N
95 91 94 eqtrd φ dom dx M N A d x = M N
96 4 95 feq12d φ dx M N A d x : dom dx M N A d x x M N B : M N
97 90 96 mpbid φ x M N B : M N
98 97 fvmptelrn φ x M N B
99 86 98 resubcld φ x M N D B
100 86 98 subge0d φ x M N 0 D B B D
101 7 100 mpbird φ x M N 0 D B
102 elrege0 D B 0 +∞ D B 0 D B
103 99 101 102 sylanbrc φ x M N D B 0 +∞
104 73 103 fmpt3d φ dx M N C A d x : M N 0 +∞
105 1 2 47 104 8 9 10 dvge0 φ x M N C A X x M N C A Y
106 12 11 oveq12d x = X C A = Q P
107 eqid x M N C A = x M N C A
108 ovex C A V
109 106 107 108 fvmpt3i X M N x M N C A X = Q P
110 8 109 syl φ x M N C A X = Q P
111 14 13 oveq12d x = Y C A = S R
112 111 107 108 fvmpt3i Y M N x M N C A Y = S R
113 9 112 syl φ x M N C A Y = S R
114 105 110 113 3brtr3d φ Q P S R
115 30 33 42 114 subled φ Q S R P
116 41 115 eqbrtrd φ R S Q P
117 21 31 33 116 subled φ R P S Q