Metamath Proof Explorer


Theorem edglnl

Description: The edges incident with a vertex N are the edges joining N with other vertices and the loops on N in a pseudograph. (Contributed by AV, 18-Dec-2021)

Ref Expression
Hypotheses edglnl.v V=VtxG
edglnl.e E=iEdgG
Assertion edglnl GUPGraphNVvVNidomE|NEivEiidomE|Ei=N=idomE|NEi

Proof

Step Hyp Ref Expression
1 edglnl.v V=VtxG
2 edglnl.e E=iEdgG
3 iunrab vVNidomE|NEivEi=idomE|vVNNEivEi
4 3 a1i GUPGraphNVvVNidomE|NEivEi=idomE|vVNNEivEi
5 4 uneq1d GUPGraphNVvVNidomE|NEivEiidomE|Ei=N=idomE|vVNNEivEiidomE|Ei=N
6 unrab idomE|vVNNEivEiidomE|Ei=N=idomE|vVNNEivEiEi=N
7 simpl NEivEiNEi
8 7 rexlimivw vVNNEivEiNEi
9 8 a1i GUPGraphNVidomEvVNNEivEiNEi
10 snidg NVNN
11 10 ad2antlr GUPGraphNVidomENN
12 eleq2 Ei=NNEiNN
13 11 12 syl5ibrcom GUPGraphNVidomEEi=NNEi
14 9 13 jaod GUPGraphNVidomEvVNNEivEiEi=NNEi
15 upgruhgr GUPGraphGUHGraph
16 2 uhgrfun GUHGraphFunE
17 15 16 syl GUPGraphFunE
18 17 adantr GUPGraphNVFunE
19 2 iedgedg FunEidomEEiEdgG
20 18 19 sylan GUPGraphNVidomEEiEdgG
21 eqid EdgG=EdgG
22 1 21 upgredg GUPGraphEiEdgGnVmVEi=nm
23 22 ex GUPGraphEiEdgGnVmVEi=nm
24 23 ad2antrr GUPGraphNVidomEEiEdgGnVmVEi=nm
25 dfsn2 n=nn
26 25 eqcomi nn=n
27 elsni NnN=n
28 sneq N=nN=n
29 28 eqcomd N=nn=N
30 27 29 syl Nnn=N
31 26 30 eqtrid Nnnn=N
32 31 26 eleq2s Nnnnn=N
33 preq2 m=nnm=nn
34 33 eleq2d m=nNnmNnn
35 33 eqeq1d m=nnm=Nnn=N
36 34 35 imbi12d m=nNnmnm=NNnnnn=N
37 32 36 mpbiri m=nNnmnm=N
38 37 imp m=nNnmnm=N
39 38 olcd m=nNnmvVNNnmvnmnm=N
40 39 expcom Nnmm=nvVNNnmvnmnm=N
41 40 3ad2ant3 NVnVmVNnmm=nvVNNnmvnmnm=N
42 41 com12 m=nNVnVmVNnmvVNNnmvnmnm=N
43 simpr3 mnNVnVmVNnmNnm
44 simpl mnNVnVmVNnmmn
45 44 necomd mnNVnVmVNnmnm
46 simpr2 mnNVnVmVNnmnVmV
47 prproe NnmnmnVmVvVNvnm
48 43 45 46 47 syl3anc mnNVnVmVNnmvVNvnm
49 r19.42v vVNNnmvnmNnmvVNvnm
50 43 48 49 sylanbrc mnNVnVmVNnmvVNNnmvnm
51 50 orcd mnNVnVmVNnmvVNNnmvnmnm=N
52 51 ex mnNVnVmVNnmvVNNnmvnmnm=N
53 42 52 pm2.61ine NVnVmVNnmvVNNnmvnmnm=N
54 53 3exp NVnVmVNnmvVNNnmvnmnm=N
55 54 ad2antlr GUPGraphNVidomEnVmVNnmvVNNnmvnmnm=N
56 55 imp GUPGraphNVidomEnVmVNnmvVNNnmvnmnm=N
57 eleq2 Ei=nmNEiNnm
58 eleq2 Ei=nmvEivnm
59 57 58 anbi12d Ei=nmNEivEiNnmvnm
60 59 rexbidv Ei=nmvVNNEivEivVNNnmvnm
61 eqeq1 Ei=nmEi=Nnm=N
62 60 61 orbi12d Ei=nmvVNNEivEiEi=NvVNNnmvnmnm=N
63 57 62 imbi12d Ei=nmNEivVNNEivEiEi=NNnmvVNNnmvnmnm=N
64 56 63 syl5ibrcom GUPGraphNVidomEnVmVEi=nmNEivVNNEivEiEi=N
65 64 rexlimdvva GUPGraphNVidomEnVmVEi=nmNEivVNNEivEiEi=N
66 24 65 syld GUPGraphNVidomEEiEdgGNEivVNNEivEiEi=N
67 20 66 mpd GUPGraphNVidomENEivVNNEivEiEi=N
68 14 67 impbid GUPGraphNVidomEvVNNEivEiEi=NNEi
69 68 rabbidva GUPGraphNVidomE|vVNNEivEiEi=N=idomE|NEi
70 6 69 eqtrid GUPGraphNVidomE|vVNNEivEiidomE|Ei=N=idomE|NEi
71 5 70 eqtrd GUPGraphNVvVNidomE|NEivEiidomE|Ei=N=idomE|NEi