Metamath Proof Explorer


Theorem effsumlt

Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses effsumlt.1 F=n0Ann!
effsumlt.2 φA+
effsumlt.3 φN0
Assertion effsumlt φseq0+FN<eA

Proof

Step Hyp Ref Expression
1 effsumlt.1 F=n0Ann!
2 effsumlt.2 φA+
3 effsumlt.3 φN0
4 nn0uz 0=0
5 0zd φ0
6 1 eftval k0Fk=Akk!
7 6 adantl φk0Fk=Akk!
8 2 rpred φA
9 reeftcl Ak0Akk!
10 8 9 sylan φk0Akk!
11 7 10 eqeltrd φk0Fk
12 4 5 11 serfre φseq0+F:0
13 12 3 ffvelcdmd φseq0+FN
14 eqid N+1=N+1
15 peano2nn0 N0N+10
16 3 15 syl φN+10
17 eqidd φk0Fk=Fk
18 nn0z k0k
19 rpexpcl A+kAk+
20 2 18 19 syl2an φk0Ak+
21 faccl k0k!
22 21 adantl φk0k!
23 22 nnrpd φk0k!+
24 20 23 rpdivcld φk0Akk!+
25 7 24 eqeltrd φk0Fk+
26 8 recnd φA
27 1 efcllem Aseq0+Fdom
28 26 27 syl φseq0+Fdom
29 4 14 16 17 25 28 isumrpcl φkN+1Fk+
30 13 29 ltaddrpd φseq0+FN<seq0+FN+kN+1Fk
31 1 efval2 AeA=k0Fk
32 26 31 syl φeA=k0Fk
33 11 recnd φk0Fk
34 4 14 16 17 33 28 isumsplit φk0Fk=k=0N+1-1Fk+kN+1Fk
35 3 nn0cnd φN
36 ax-1cn 1
37 pncan N1N+1-1=N
38 35 36 37 sylancl φN+1-1=N
39 38 oveq2d φ0N+1-1=0N
40 39 sumeq1d φk=0N+1-1Fk=k=0NFk
41 eqidd φk0NFk=Fk
42 3 4 eleqtrdi φN0
43 elfznn0 k0Nk0
44 43 33 sylan2 φk0NFk
45 41 42 44 fsumser φk=0NFk=seq0+FN
46 40 45 eqtrd φk=0N+1-1Fk=seq0+FN
47 46 oveq1d φk=0N+1-1Fk+kN+1Fk=seq0+FN+kN+1Fk
48 32 34 47 3eqtrd φeA=seq0+FN+kN+1Fk
49 30 48 breqtrrd φseq0+FN<eA