| Step | Hyp | Ref | Expression | 
						
							| 1 |  | effsumlt.1 |  | 
						
							| 2 |  | effsumlt.2 |  | 
						
							| 3 |  | effsumlt.3 |  | 
						
							| 4 |  | nn0uz |  | 
						
							| 5 |  | 0zd |  | 
						
							| 6 | 1 | eftval |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 | 2 | rpred |  | 
						
							| 9 |  | reeftcl |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 | 7 10 | eqeltrd |  | 
						
							| 12 | 4 5 11 | serfre |  | 
						
							| 13 | 12 3 | ffvelcdmd |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | peano2nn0 |  | 
						
							| 16 | 3 15 | syl |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 |  | nn0z |  | 
						
							| 19 |  | rpexpcl |  | 
						
							| 20 | 2 18 19 | syl2an |  | 
						
							| 21 |  | faccl |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 22 | nnrpd |  | 
						
							| 24 | 20 23 | rpdivcld |  | 
						
							| 25 | 7 24 | eqeltrd |  | 
						
							| 26 | 8 | recnd |  | 
						
							| 27 | 1 | efcllem |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 4 14 16 17 25 28 | isumrpcl |  | 
						
							| 30 | 13 29 | ltaddrpd |  | 
						
							| 31 | 1 | efval2 |  | 
						
							| 32 | 26 31 | syl |  | 
						
							| 33 | 11 | recnd |  | 
						
							| 34 | 4 14 16 17 33 28 | isumsplit |  | 
						
							| 35 | 3 | nn0cnd |  | 
						
							| 36 |  | ax-1cn |  | 
						
							| 37 |  | pncan |  | 
						
							| 38 | 35 36 37 | sylancl |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 39 | sumeq1d |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 | 3 4 | eleqtrdi |  | 
						
							| 43 |  | elfznn0 |  | 
						
							| 44 | 43 33 | sylan2 |  | 
						
							| 45 | 41 42 44 | fsumser |  | 
						
							| 46 | 40 45 | eqtrd |  | 
						
							| 47 | 46 | oveq1d |  | 
						
							| 48 | 32 34 47 | 3eqtrd |  | 
						
							| 49 | 30 48 | breqtrrd |  |