Metamath Proof Explorer


Theorem elcls3

Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of Munkres p. 95. (Contributed by NM, 26-Feb-2007) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses elcls3.1 φJ=topGenB
elcls3.2 φX=J
elcls3.3 φBTopBases
elcls3.4 φSX
elcls3.5 φPX
Assertion elcls3 φPclsJSxBPxxS

Proof

Step Hyp Ref Expression
1 elcls3.1 φJ=topGenB
2 elcls3.2 φX=J
3 elcls3.3 φBTopBases
4 elcls3.4 φSX
5 elcls3.5 φPX
6 tgcl BTopBasestopGenBTop
7 3 6 syl φtopGenBTop
8 1 7 eqeltrd φJTop
9 4 2 sseqtrd φSJ
10 5 2 eleqtrd φPJ
11 eqid J=J
12 11 elcls JTopSJPJPclsJSyJPyyS
13 8 9 10 12 syl3anc φPclsJSyJPyyS
14 bastg BTopBasesBtopGenB
15 3 14 syl φBtopGenB
16 15 1 sseqtrrd φBJ
17 16 sseld φyByJ
18 17 imim1d φyJPyySyBPyyS
19 18 ralimdv2 φyJPyySyBPyyS
20 eleq2w y=xPyPx
21 ineq1 y=xyS=xS
22 21 neeq1d y=xySxS
23 20 22 imbi12d y=xPyySPxxS
24 23 cbvralvw yBPyySxBPxxS
25 19 24 imbitrdi φyJPyySxBPxxS
26 simprl φxBPxxSyJPyyJ
27 1 ad2antrr φxBPxxSyJPyJ=topGenB
28 26 27 eleqtrd φxBPxxSyJPyytopGenB
29 simprr φxBPxxSyJPyPy
30 tg2 ytopGenBPyzBPzzy
31 28 29 30 syl2anc φxBPxxSyJPyzBPzzy
32 eleq2w x=zPxPz
33 ineq1 x=zxS=zS
34 33 neeq1d x=zxSzS
35 32 34 imbi12d x=zPxxSPzzS
36 35 rspccva xBPxxSzBPzzS
37 36 imp xBPxxSzBPzzS
38 ssdisj zyyS=zS=
39 38 ex zyyS=zS=
40 39 necon3d zyzSyS
41 37 40 syl5com xBPxxSzBPzzyyS
42 41 exp31 xBPxxSzBPzzyyS
43 42 imp4a xBPxxSzBPzzyyS
44 43 rexlimdv xBPxxSzBPzzyyS
45 44 ad2antlr φxBPxxSyJPyzBPzzyyS
46 31 45 mpd φxBPxxSyJPyyS
47 46 exp43 φxBPxxSyJPyyS
48 47 ralrimdv φxBPxxSyJPyyS
49 25 48 impbid φyJPyySxBPxxS
50 13 49 bitrd φPclsJSxBPxxS