Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of Munkres p. 95. (Contributed by NM, 26-Feb-2007) (Revised by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elcls3.1 | |
|
elcls3.2 | |
||
elcls3.3 | |
||
elcls3.4 | |
||
elcls3.5 | |
||
Assertion | elcls3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcls3.1 | |
|
2 | elcls3.2 | |
|
3 | elcls3.3 | |
|
4 | elcls3.4 | |
|
5 | elcls3.5 | |
|
6 | tgcl | |
|
7 | 3 6 | syl | |
8 | 1 7 | eqeltrd | |
9 | 4 2 | sseqtrd | |
10 | 5 2 | eleqtrd | |
11 | eqid | |
|
12 | 11 | elcls | |
13 | 8 9 10 12 | syl3anc | |
14 | bastg | |
|
15 | 3 14 | syl | |
16 | 15 1 | sseqtrrd | |
17 | 16 | sseld | |
18 | 17 | imim1d | |
19 | 18 | ralimdv2 | |
20 | eleq2w | |
|
21 | ineq1 | |
|
22 | 21 | neeq1d | |
23 | 20 22 | imbi12d | |
24 | 23 | cbvralvw | |
25 | 19 24 | imbitrdi | |
26 | simprl | |
|
27 | 1 | ad2antrr | |
28 | 26 27 | eleqtrd | |
29 | simprr | |
|
30 | tg2 | |
|
31 | 28 29 30 | syl2anc | |
32 | eleq2w | |
|
33 | ineq1 | |
|
34 | 33 | neeq1d | |
35 | 32 34 | imbi12d | |
36 | 35 | rspccva | |
37 | 36 | imp | |
38 | ssdisj | |
|
39 | 38 | ex | |
40 | 39 | necon3d | |
41 | 37 40 | syl5com | |
42 | 41 | exp31 | |
43 | 42 | imp4a | |
44 | 43 | rexlimdv | |
45 | 44 | ad2antlr | |
46 | 31 45 | mpd | |
47 | 46 | exp43 | |
48 | 47 | ralrimdv | |
49 | 25 48 | impbid | |
50 | 13 49 | bitrd | |