Metamath Proof Explorer


Theorem eqger

Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses eqger.x X=BaseG
eqger.r ˙=G~QGY
Assertion eqger YSubGrpG˙ErX

Proof

Step Hyp Ref Expression
1 eqger.x X=BaseG
2 eqger.r ˙=G~QGY
3 2 releqg Rel˙
4 3 a1i YSubGrpGRel˙
5 subgrcl YSubGrpGGGrp
6 1 subgss YSubGrpGYX
7 eqid invgG=invgG
8 eqid +G=+G
9 1 7 8 2 eqgval GGrpYXx˙yxXyXinvgGx+GyY
10 5 6 9 syl2anc YSubGrpGx˙yxXyXinvgGx+GyY
11 10 biimpa YSubGrpGx˙yxXyXinvgGx+GyY
12 11 simp2d YSubGrpGx˙yyX
13 11 simp1d YSubGrpGx˙yxX
14 5 adantr YSubGrpGx˙yGGrp
15 1 7 14 13 grpinvcld YSubGrpGx˙yinvgGxX
16 1 8 7 grpinvadd GGrpinvgGxXyXinvgGinvgGx+Gy=invgGy+GinvgGinvgGx
17 14 15 12 16 syl3anc YSubGrpGx˙yinvgGinvgGx+Gy=invgGy+GinvgGinvgGx
18 1 7 grpinvinv GGrpxXinvgGinvgGx=x
19 14 13 18 syl2anc YSubGrpGx˙yinvgGinvgGx=x
20 19 oveq2d YSubGrpGx˙yinvgGy+GinvgGinvgGx=invgGy+Gx
21 17 20 eqtrd YSubGrpGx˙yinvgGinvgGx+Gy=invgGy+Gx
22 11 simp3d YSubGrpGx˙yinvgGx+GyY
23 7 subginvcl YSubGrpGinvgGx+GyYinvgGinvgGx+GyY
24 22 23 syldan YSubGrpGx˙yinvgGinvgGx+GyY
25 21 24 eqeltrrd YSubGrpGx˙yinvgGy+GxY
26 6 adantr YSubGrpGx˙yYX
27 1 7 8 2 eqgval GGrpYXy˙xyXxXinvgGy+GxY
28 14 26 27 syl2anc YSubGrpGx˙yy˙xyXxXinvgGy+GxY
29 12 13 25 28 mpbir3and YSubGrpGx˙yy˙x
30 13 adantrr YSubGrpGx˙yy˙zxX
31 1 7 8 2 eqgval GGrpYXy˙zyXzXinvgGy+GzY
32 5 6 31 syl2anc YSubGrpGy˙zyXzXinvgGy+GzY
33 32 biimpa YSubGrpGy˙zyXzXinvgGy+GzY
34 33 adantrl YSubGrpGx˙yy˙zyXzXinvgGy+GzY
35 34 simp2d YSubGrpGx˙yy˙zzX
36 5 adantr YSubGrpGx˙yy˙zGGrp
37 1 7 36 30 grpinvcld YSubGrpGx˙yy˙zinvgGxX
38 12 adantrr YSubGrpGx˙yy˙zyX
39 1 7 36 38 grpinvcld YSubGrpGx˙yy˙zinvgGyX
40 1 8 36 39 35 grpcld YSubGrpGx˙yy˙zinvgGy+GzX
41 1 8 36 37 38 40 grpassd YSubGrpGx˙yy˙zinvgGx+Gy+GinvgGy+Gz=invgGx+Gy+GinvgGy+Gz
42 eqid 0G=0G
43 1 8 42 7 grprinv GGrpyXy+GinvgGy=0G
44 36 38 43 syl2anc YSubGrpGx˙yy˙zy+GinvgGy=0G
45 44 oveq1d YSubGrpGx˙yy˙zy+GinvgGy+Gz=0G+Gz
46 1 8 36 38 39 35 grpassd YSubGrpGx˙yy˙zy+GinvgGy+Gz=y+GinvgGy+Gz
47 1 8 42 36 35 grplidd YSubGrpGx˙yy˙z0G+Gz=z
48 45 46 47 3eqtr3d YSubGrpGx˙yy˙zy+GinvgGy+Gz=z
49 48 oveq2d YSubGrpGx˙yy˙zinvgGx+Gy+GinvgGy+Gz=invgGx+Gz
50 41 49 eqtrd YSubGrpGx˙yy˙zinvgGx+Gy+GinvgGy+Gz=invgGx+Gz
51 simpl YSubGrpGx˙yy˙zYSubGrpG
52 22 adantrr YSubGrpGx˙yy˙zinvgGx+GyY
53 34 simp3d YSubGrpGx˙yy˙zinvgGy+GzY
54 8 subgcl YSubGrpGinvgGx+GyYinvgGy+GzYinvgGx+Gy+GinvgGy+GzY
55 51 52 53 54 syl3anc YSubGrpGx˙yy˙zinvgGx+Gy+GinvgGy+GzY
56 50 55 eqeltrrd YSubGrpGx˙yy˙zinvgGx+GzY
57 6 adantr YSubGrpGx˙yy˙zYX
58 1 7 8 2 eqgval GGrpYXx˙zxXzXinvgGx+GzY
59 36 57 58 syl2anc YSubGrpGx˙yy˙zx˙zxXzXinvgGx+GzY
60 30 35 56 59 mpbir3and YSubGrpGx˙yy˙zx˙z
61 1 8 42 7 grplinv GGrpxXinvgGx+Gx=0G
62 5 61 sylan YSubGrpGxXinvgGx+Gx=0G
63 42 subg0cl YSubGrpG0GY
64 63 adantr YSubGrpGxX0GY
65 62 64 eqeltrd YSubGrpGxXinvgGx+GxY
66 65 ex YSubGrpGxXinvgGx+GxY
67 66 pm4.71rd YSubGrpGxXinvgGx+GxYxX
68 1 7 8 2 eqgval GGrpYXx˙xxXxXinvgGx+GxY
69 5 6 68 syl2anc YSubGrpGx˙xxXxXinvgGx+GxY
70 df-3an xXxXinvgGx+GxYxXxXinvgGx+GxY
71 anidm xXxXxX
72 71 anbi2ci xXxXinvgGx+GxYinvgGx+GxYxX
73 70 72 bitri xXxXinvgGx+GxYinvgGx+GxYxX
74 69 73 bitrdi YSubGrpGx˙xinvgGx+GxYxX
75 67 74 bitr4d YSubGrpGxXx˙x
76 4 29 60 75 iserd YSubGrpG˙ErX