| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  | 
						
							| 2 |  | erclwwlkn.r |  | 
						
							| 3 | 1 2 | erclwwlkneqlen |  | 
						
							| 4 | 1 2 | erclwwlkneq |  | 
						
							| 5 |  | simpl2 |  | 
						
							| 6 |  | simpl1 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | clwwlknbp |  | 
						
							| 9 |  | eqcom |  | 
						
							| 10 | 9 | biimpi |  | 
						
							| 11 | 8 10 | simpl2im |  | 
						
							| 12 | 11 1 | eleq2s |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 7 | clwwlknwrd |  | 
						
							| 16 | 15 1 | eleq2s |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | simprr |  | 
						
							| 21 | 19 20 | cshwcshid |  | 
						
							| 22 |  | oveq2 |  | 
						
							| 23 |  | oveq2 |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 | 22 24 | sylan9eq |  | 
						
							| 26 | 25 | eleq2d |  | 
						
							| 27 | 26 | anbi1d |  | 
						
							| 28 | 22 | adantr |  | 
						
							| 29 | 28 | rexeqdv |  | 
						
							| 30 | 21 27 29 | 3imtr4d |  | 
						
							| 31 | 14 30 | mpancom |  | 
						
							| 32 | 31 | expd |  | 
						
							| 33 | 32 | rexlimdv |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 34 | com23 |  | 
						
							| 36 | 35 | 3impia |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | eqeq2d |  | 
						
							| 40 | 39 | cbvrexvw |  | 
						
							| 41 | 37 40 | sylibr |  | 
						
							| 42 | 5 6 41 | 3jca |  | 
						
							| 43 | 1 2 | erclwwlkneq |  | 
						
							| 44 | 43 | ancoms |  | 
						
							| 45 | 42 44 | imbitrrid |  | 
						
							| 46 | 45 | expd |  | 
						
							| 47 | 4 46 | sylbid |  | 
						
							| 48 | 3 47 | mpdd |  | 
						
							| 49 | 48 | el2v |  |