Metamath Proof Explorer


Theorem esummono

Description: Extended sum is monotonic. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esummono.f k φ
esummono.c φ C V
esummono.b φ k C B 0 +∞
esummono.a φ A C
Assertion esummono φ * k A B * k C B

Proof

Step Hyp Ref Expression
1 esummono.f k φ
2 esummono.c φ C V
3 esummono.b φ k C B 0 +∞
4 esummono.a φ A C
5 difexg C V C A V
6 2 5 syl φ C A V
7 simpr φ k C A k C A
8 7 eldifad φ k C A k C
9 8 3 syldan φ k C A B 0 +∞
10 9 ex φ k C A B 0 +∞
11 1 10 ralrimi φ k C A B 0 +∞
12 nfcv _ k C A
13 12 esumcl C A V k C A B 0 +∞ * k C A B 0 +∞
14 6 11 13 syl2anc φ * k C A B 0 +∞
15 elxrge0 * k C A B 0 +∞ * k C A B * 0 * k C A B
16 15 simprbi * k C A B 0 +∞ 0 * k C A B
17 14 16 syl φ 0 * k C A B
18 iccssxr 0 +∞ *
19 2 4 ssexd φ A V
20 4 sselda φ k A k C
21 20 3 syldan φ k A B 0 +∞
22 21 ex φ k A B 0 +∞
23 1 22 ralrimi φ k A B 0 +∞
24 nfcv _ k A
25 24 esumcl A V k A B 0 +∞ * k A B 0 +∞
26 19 23 25 syl2anc φ * k A B 0 +∞
27 18 26 sseldi φ * k A B *
28 18 14 sseldi φ * k C A B *
29 xraddge02 * k A B * * k C A B * 0 * k C A B * k A B * k A B + 𝑒 * k C A B
30 27 28 29 syl2anc φ 0 * k C A B * k A B * k A B + 𝑒 * k C A B
31 17 30 mpd φ * k A B * k A B + 𝑒 * k C A B
32 disjdif A C A =
33 32 a1i φ A C A =
34 1 24 12 19 6 33 21 9 esumsplit φ * k A C A B = * k A B + 𝑒 * k C A B
35 undif A C A C A = C
36 4 35 sylib φ A C A = C
37 1 36 esumeq1d φ * k A C A B = * k C B
38 34 37 eqtr3d φ * k A B + 𝑒 * k C A B = * k C B
39 31 38 breqtrd φ * k A B * k C B