Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumpinfsum.p | |
|
esumpinfsum.a | |
||
esumpinfsum.1 | |
||
esumpinfsum.2 | |
||
esumpinfsum.3 | |
||
esumpinfsum.4 | |
||
esumpinfsum.5 | |
||
esumpinfsum.6 | |
||
Assertion | esumpinfsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumpinfsum.p | |
|
2 | esumpinfsum.a | |
|
3 | esumpinfsum.1 | |
|
4 | esumpinfsum.2 | |
|
5 | esumpinfsum.3 | |
|
6 | esumpinfsum.4 | |
|
7 | esumpinfsum.5 | |
|
8 | esumpinfsum.6 | |
|
9 | iccssxr | |
|
10 | 5 | ex | |
11 | 1 10 | ralrimi | |
12 | 2 | esumcl | |
13 | 3 11 12 | syl2anc | |
14 | 9 13 | sselid | |
15 | 0xr | |
|
16 | xrltle | |
|
17 | 15 7 16 | sylancr | |
18 | 8 17 | mpd | |
19 | pnfge | |
|
20 | 7 19 | syl | |
21 | pnfxr | |
|
22 | elicc1 | |
|
23 | 15 21 22 | mp2an | |
24 | 7 18 20 23 | syl3anbrc | |
25 | nfcv | |
|
26 | 2 25 | esumcst | |
27 | 3 24 26 | syl2anc | |
28 | hashinf | |
|
29 | 3 4 28 | syl2anc | |
30 | 29 | oveq1d | |
31 | xmulpnf2 | |
|
32 | 7 8 31 | syl2anc | |
33 | 27 30 32 | 3eqtrd | |
34 | 24 | adantr | |
35 | 1 2 3 34 5 6 | esumlef | |
36 | 33 35 | eqbrtrrd | |
37 | xgepnf | |
|
38 | 37 | biimpd | |
39 | 14 36 38 | sylc | |