Step |
Hyp |
Ref |
Expression |
1 |
|
esumpinfsum.p |
|
2 |
|
esumpinfsum.a |
|
3 |
|
esumpinfsum.1 |
|
4 |
|
esumpinfsum.2 |
|
5 |
|
esumpinfsum.3 |
|
6 |
|
esumpinfsum.4 |
|
7 |
|
esumpinfsum.5 |
|
8 |
|
esumpinfsum.6 |
|
9 |
|
iccssxr |
|
10 |
5
|
ex |
|
11 |
1 10
|
ralrimi |
|
12 |
2
|
esumcl |
|
13 |
3 11 12
|
syl2anc |
|
14 |
9 13
|
sselid |
|
15 |
|
0xr |
|
16 |
|
xrltle |
|
17 |
15 7 16
|
sylancr |
|
18 |
8 17
|
mpd |
|
19 |
|
pnfge |
|
20 |
7 19
|
syl |
|
21 |
|
pnfxr |
|
22 |
|
elicc1 |
|
23 |
15 21 22
|
mp2an |
|
24 |
7 18 20 23
|
syl3anbrc |
|
25 |
|
nfcv |
|
26 |
2 25
|
esumcst |
|
27 |
3 24 26
|
syl2anc |
|
28 |
|
hashinf |
|
29 |
3 4 28
|
syl2anc |
|
30 |
29
|
oveq1d |
|
31 |
|
xmulpnf2 |
|
32 |
7 8 31
|
syl2anc |
|
33 |
27 30 32
|
3eqtrd |
|
34 |
24
|
adantr |
|
35 |
1 2 3 34 5 6
|
esumlef |
|
36 |
33 35
|
eqbrtrrd |
|
37 |
|
xgepnf |
|
38 |
37
|
biimpd |
|
39 |
14 36 38
|
sylc |
|