Metamath Proof Explorer


Theorem esumpinfsum

Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumpinfsum.p kφ
esumpinfsum.a _kA
esumpinfsum.1 φAV
esumpinfsum.2 φ¬AFin
esumpinfsum.3 φkAB0+∞
esumpinfsum.4 φkAMB
esumpinfsum.5 φM*
esumpinfsum.6 φ0<M
Assertion esumpinfsum φ*kAB=+∞

Proof

Step Hyp Ref Expression
1 esumpinfsum.p kφ
2 esumpinfsum.a _kA
3 esumpinfsum.1 φAV
4 esumpinfsum.2 φ¬AFin
5 esumpinfsum.3 φkAB0+∞
6 esumpinfsum.4 φkAMB
7 esumpinfsum.5 φM*
8 esumpinfsum.6 φ0<M
9 iccssxr 0+∞*
10 5 ex φkAB0+∞
11 1 10 ralrimi φkAB0+∞
12 2 esumcl AVkAB0+∞*kAB0+∞
13 3 11 12 syl2anc φ*kAB0+∞
14 9 13 sselid φ*kAB*
15 0xr 0*
16 xrltle 0*M*0<M0M
17 15 7 16 sylancr φ0<M0M
18 8 17 mpd φ0M
19 pnfge M*M+∞
20 7 19 syl φM+∞
21 pnfxr +∞*
22 elicc1 0*+∞*M0+∞M*0MM+∞
23 15 21 22 mp2an M0+∞M*0MM+∞
24 7 18 20 23 syl3anbrc φM0+∞
25 nfcv _kM
26 2 25 esumcst AVM0+∞*kAM=A𝑒M
27 3 24 26 syl2anc φ*kAM=A𝑒M
28 hashinf AV¬AFinA=+∞
29 3 4 28 syl2anc φA=+∞
30 29 oveq1d φA𝑒M=+∞𝑒M
31 xmulpnf2 M*0<M+∞𝑒M=+∞
32 7 8 31 syl2anc φ+∞𝑒M=+∞
33 27 30 32 3eqtrd φ*kAM=+∞
34 24 adantr φkAM0+∞
35 1 2 3 34 5 6 esumlef φ*kAM*kAB
36 33 35 eqbrtrrd φ+∞*kAB
37 xgepnf *kAB*+∞*kAB*kAB=+∞
38 37 biimpd *kAB*+∞*kAB*kAB=+∞
39 14 36 38 sylc φ*kAB=+∞