Metamath Proof Explorer


Theorem evengpoap3

Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Assertion evengpoap3 mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3

Proof

Step Hyp Ref Expression
1 3odd 3Odd
2 1 a1i N123Odd
3 2 anim1i N12NEven3OddNEven
4 3 ancomd N12NEvenNEven3Odd
5 emoo NEven3OddN3Odd
6 4 5 syl N12NEvenN3Odd
7 breq2 m=N37<m7<N3
8 eleq1 m=N3mGoldbachOddN3GoldbachOdd
9 7 8 imbi12d m=N37<mmGoldbachOdd7<N3N3GoldbachOdd
10 9 adantl N12NEvenm=N37<mmGoldbachOdd7<N3N3GoldbachOdd
11 6 10 rspcdv N12NEvenmOdd7<mmGoldbachOdd7<N3N3GoldbachOdd
12 eluz2 N1212N12N
13 7p3e10 7+3=10
14 1nn0 10
15 0nn0 00
16 2nn 2
17 2pos 0<2
18 14 15 16 17 declt 10<12
19 13 18 eqbrtri 7+3<12
20 7re 7
21 3re 3
22 20 21 readdcli 7+3
23 2nn0 20
24 14 23 deccl 120
25 24 nn0rei 12
26 zre NN
27 ltletr 7+312N7+3<1212N7+3<N
28 22 25 26 27 mp3an12i N7+3<1212N7+3<N
29 19 28 mpani N12N7+3<N
30 29 imp N12N7+3<N
31 30 3adant1 12N12N7+3<N
32 20 a1i 12N12N7
33 21 a1i 12N12N3
34 26 3ad2ant2 12N12NN
35 32 33 34 ltaddsubd 12N12N7+3<N7<N3
36 31 35 mpbid 12N12N7<N3
37 12 36 sylbi N127<N3
38 37 adantr N12NEven7<N3
39 simpr N12NEvenN3GoldbachOddN3GoldbachOdd
40 oveq1 o=N3o+3=N-3+3
41 40 eqeq2d o=N3N=o+3N=N-3+3
42 41 adantl N12NEvenN3GoldbachOddo=N3N=o+3N=N-3+3
43 eluzelcn N12N
44 3cn 3
45 43 44 jctir N12N3
46 45 adantr N12NEvenN3
47 46 adantr N12NEvenN3GoldbachOddN3
48 npcan N3N-3+3=N
49 48 eqcomd N3N=N-3+3
50 47 49 syl N12NEvenN3GoldbachOddN=N-3+3
51 39 42 50 rspcedvd N12NEvenN3GoldbachOddoGoldbachOddN=o+3
52 51 ex N12NEvenN3GoldbachOddoGoldbachOddN=o+3
53 38 52 embantd N12NEven7<N3N3GoldbachOddoGoldbachOddN=o+3
54 11 53 syldc mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3