Metamath Proof Explorer


Theorem evlsvvvallem2

Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem2.d D=h0I|h-1Fin
evlsvvvallem2.p P=ImPolyU
evlsvvvallem2.u U=S𝑠R
evlsvvvallem2.b B=BaseP
evlsvvvallem2.k K=BaseS
evlsvvvallem2.m M=mulGrpS
evlsvvvallem2.w ×˙=M
evlsvvvallem2.x ·˙=S
evlsvvvallem2.i φIV
evlsvvvallem2.s φSCRing
evlsvvvallem2.r φRSubRingS
evlsvvvallem2.f φFB
evlsvvvallem2.a φAKI
Assertion evlsvvvallem2 φfinSupp0SbDFb·˙MvIbv×˙Av

Proof

Step Hyp Ref Expression
1 evlsvvvallem2.d D=h0I|h-1Fin
2 evlsvvvallem2.p P=ImPolyU
3 evlsvvvallem2.u U=S𝑠R
4 evlsvvvallem2.b B=BaseP
5 evlsvvvallem2.k K=BaseS
6 evlsvvvallem2.m M=mulGrpS
7 evlsvvvallem2.w ×˙=M
8 evlsvvvallem2.x ·˙=S
9 evlsvvvallem2.i φIV
10 evlsvvvallem2.s φSCRing
11 evlsvvvallem2.r φRSubRingS
12 evlsvvvallem2.f φFB
13 evlsvvvallem2.a φAKI
14 ovex 0IV
15 1 14 rabex2 DV
16 15 mptex bDFb·˙MvIbv×˙AvV
17 16 a1i φbDFb·˙MvIbv×˙AvV
18 fvexd φ0SV
19 funmpt FunbDFb·˙MvIbv×˙Av
20 19 a1i φFunbDFb·˙MvIbv×˙Av
21 eqid 0U=0U
22 3 ovexi UV
23 22 a1i φUV
24 2 4 21 12 23 mplelsfi φfinSupp0UF
25 eqid BaseU=BaseU
26 2 25 4 1 12 mplelf φF:DBaseU
27 ssidd φFsupp0UFsupp0U
28 fvexd φ0UV
29 26 27 12 28 suppssrg φbDsupp0UFFb=0U
30 eqid 0S=0S
31 3 30 subrg0 RSubRingS0S=0U
32 11 31 syl φ0S=0U
33 32 eqcomd φ0U=0S
34 33 adantr φbDsupp0UF0U=0S
35 29 34 eqtrd φbDsupp0UFFb=0S
36 35 oveq1d φbDsupp0UFFb·˙MvIbv×˙Av=0S·˙MvIbv×˙Av
37 10 crngringd φSRing
38 37 adantr φbDsupp0UFSRing
39 eldifi bDsupp0UFbD
40 9 adantr φbDIV
41 10 adantr φbDSCRing
42 13 adantr φbDAKI
43 simpr φbDbD
44 1 5 6 7 40 41 42 43 evlsvvvallem φbDMvIbv×˙AvK
45 39 44 sylan2 φbDsupp0UFMvIbv×˙AvK
46 5 8 30 38 45 ringlzd φbDsupp0UF0S·˙MvIbv×˙Av=0S
47 36 46 eqtrd φbDsupp0UFFb·˙MvIbv×˙Av=0S
48 15 a1i φDV
49 47 48 suppss2 φbDFb·˙MvIbv×˙Avsupp0SFsupp0U
50 17 18 20 24 49 fsuppsssuppgd φfinSupp0SbDFb·˙MvIbv×˙Av