| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlsvvvallem2.d |  | 
						
							| 2 |  | evlsvvvallem2.p |  | 
						
							| 3 |  | evlsvvvallem2.u |  | 
						
							| 4 |  | evlsvvvallem2.b |  | 
						
							| 5 |  | evlsvvvallem2.k |  | 
						
							| 6 |  | evlsvvvallem2.m |  | 
						
							| 7 |  | evlsvvvallem2.w |  | 
						
							| 8 |  | evlsvvvallem2.x |  | 
						
							| 9 |  | evlsvvvallem2.i |  | 
						
							| 10 |  | evlsvvvallem2.s |  | 
						
							| 11 |  | evlsvvvallem2.r |  | 
						
							| 12 |  | evlsvvvallem2.f |  | 
						
							| 13 |  | evlsvvvallem2.a |  | 
						
							| 14 |  | ovex |  | 
						
							| 15 | 1 14 | rabex2 |  | 
						
							| 16 | 15 | mptex |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | fvexd |  | 
						
							| 19 |  | funmpt |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 2 4 21 12 | mplelsfi |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 2 23 4 1 12 | mplelf |  | 
						
							| 25 |  | ssidd |  | 
						
							| 26 |  | fvexd |  | 
						
							| 27 | 24 25 12 26 | suppssrg |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 3 28 | subrg0 |  | 
						
							| 30 | 11 29 | syl |  | 
						
							| 31 | 30 | eqcomd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 27 32 | eqtrd |  | 
						
							| 34 | 33 | oveq1d |  | 
						
							| 35 | 10 | crngringd |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | eldifi |  | 
						
							| 38 | 9 | adantr |  | 
						
							| 39 | 10 | adantr |  | 
						
							| 40 | 13 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 1 5 6 7 38 39 40 41 | evlsvvvallem |  | 
						
							| 43 | 37 42 | sylan2 |  | 
						
							| 44 | 5 8 28 36 43 | ringlzd |  | 
						
							| 45 | 34 44 | eqtrd |  | 
						
							| 46 | 15 | a1i |  | 
						
							| 47 | 45 46 | suppss2 |  | 
						
							| 48 | 17 18 20 22 47 | fsuppsssuppgd |  |