Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsvvvallem2.d | |
|
evlsvvvallem2.p | |
||
evlsvvvallem2.u | |
||
evlsvvvallem2.b | |
||
evlsvvvallem2.k | |
||
evlsvvvallem2.m | |
||
evlsvvvallem2.w | |
||
evlsvvvallem2.x | |
||
evlsvvvallem2.i | |
||
evlsvvvallem2.s | |
||
evlsvvvallem2.r | |
||
evlsvvvallem2.f | |
||
evlsvvvallem2.a | |
||
Assertion | evlsvvvallem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem2.d | |
|
2 | evlsvvvallem2.p | |
|
3 | evlsvvvallem2.u | |
|
4 | evlsvvvallem2.b | |
|
5 | evlsvvvallem2.k | |
|
6 | evlsvvvallem2.m | |
|
7 | evlsvvvallem2.w | |
|
8 | evlsvvvallem2.x | |
|
9 | evlsvvvallem2.i | |
|
10 | evlsvvvallem2.s | |
|
11 | evlsvvvallem2.r | |
|
12 | evlsvvvallem2.f | |
|
13 | evlsvvvallem2.a | |
|
14 | ovex | |
|
15 | 1 14 | rabex2 | |
16 | 15 | mptex | |
17 | 16 | a1i | |
18 | fvexd | |
|
19 | funmpt | |
|
20 | 19 | a1i | |
21 | eqid | |
|
22 | 3 | ovexi | |
23 | 22 | a1i | |
24 | 2 4 21 12 23 | mplelsfi | |
25 | eqid | |
|
26 | 2 25 4 1 12 | mplelf | |
27 | ssidd | |
|
28 | fvexd | |
|
29 | 26 27 12 28 | suppssrg | |
30 | eqid | |
|
31 | 3 30 | subrg0 | |
32 | 11 31 | syl | |
33 | 32 | eqcomd | |
34 | 33 | adantr | |
35 | 29 34 | eqtrd | |
36 | 35 | oveq1d | |
37 | 10 | crngringd | |
38 | 37 | adantr | |
39 | eldifi | |
|
40 | 9 | adantr | |
41 | 10 | adantr | |
42 | 13 | adantr | |
43 | simpr | |
|
44 | 1 5 6 7 40 41 42 43 | evlsvvvallem | |
45 | 39 44 | sylan2 | |
46 | 5 8 30 38 45 | ringlzd | |
47 | 36 46 | eqtrd | |
48 | 15 | a1i | |
49 | 47 48 | suppss2 | |
50 | 17 18 20 24 49 | fsuppsssuppgd | |