Metamath Proof Explorer


Theorem evthiccabs

Description: Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses evthiccabs.a φA
evthiccabs.b φB
evthiccabs.aleb φAB
evthiccabs.f φF:ABcn
Assertion evthiccabs φxAByABFyFxzABwABFzFw

Proof

Step Hyp Ref Expression
1 evthiccabs.a φA
2 evthiccabs.b φB
3 evthiccabs.aleb φAB
4 evthiccabs.f φF:ABcn
5 ax-resscn
6 ssid
7 cncfss ABcnABcn
8 5 6 7 mp2an ABcnABcn
9 8 4 sselid φF:ABcn
10 abscncf abs:cn
11 10 a1i φabs:cn
12 9 11 cncfco φabsF:ABcn
13 1 2 3 12 evthicc φxAByABabsFyabsFxzABwABabsFzabsFw
14 13 simpld φxAByABabsFyabsFx
15 cncff F:ABcnF:AB
16 ffun F:ABFunF
17 4 15 16 3syl φFunF
18 17 adantr φyABFunF
19 simpr φyAByAB
20 fdm F:ABdomF=AB
21 4 15 20 3syl φdomF=AB
22 21 eqcomd φAB=domF
23 22 adantr φyABAB=domF
24 19 23 eleqtrd φyABydomF
25 fvco FunFydomFabsFy=Fy
26 18 24 25 syl2anc φyABabsFy=Fy
27 26 adantlr φxAByABabsFy=Fy
28 17 adantr φxABFunF
29 simpr φxABxAB
30 22 adantr φxABAB=domF
31 29 30 eleqtrd φxABxdomF
32 fvco FunFxdomFabsFx=Fx
33 28 31 32 syl2anc φxABabsFx=Fx
34 33 adantr φxAByABabsFx=Fx
35 27 34 breq12d φxAByABabsFyabsFxFyFx
36 35 ralbidva φxAByABabsFyabsFxyABFyFx
37 36 rexbidva φxAByABabsFyabsFxxAByABFyFx
38 14 37 mpbid φxAByABFyFx
39 13 simprd φzABwABabsFzabsFw
40 17 adantr φzABFunF
41 simpr φzABzAB
42 22 adantr φzABAB=domF
43 41 42 eleqtrd φzABzdomF
44 fvco FunFzdomFabsFz=Fz
45 40 43 44 syl2anc φzABabsFz=Fz
46 45 adantr φzABwABabsFz=Fz
47 17 adantr φwABFunF
48 simpr φwABwAB
49 22 adantr φwABAB=domF
50 48 49 eleqtrd φwABwdomF
51 fvco FunFwdomFabsFw=Fw
52 47 50 51 syl2anc φwABabsFw=Fw
53 52 adantlr φzABwABabsFw=Fw
54 46 53 breq12d φzABwABabsFzabsFwFzFw
55 54 ralbidva φzABwABabsFzabsFwwABFzFw
56 55 rexbidva φzABwABabsFzabsFwzABwABFzFw
57 39 56 mpbid φzABwABFzFw
58 38 57 jca φxAByABFyFxzABwABFzFw