Description: Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evthiccabs.a | |
|
evthiccabs.b | |
||
evthiccabs.aleb | |
||
evthiccabs.f | |
||
Assertion | evthiccabs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evthiccabs.a | |
|
2 | evthiccabs.b | |
|
3 | evthiccabs.aleb | |
|
4 | evthiccabs.f | |
|
5 | ax-resscn | |
|
6 | ssid | |
|
7 | cncfss | |
|
8 | 5 6 7 | mp2an | |
9 | 8 4 | sselid | |
10 | abscncf | |
|
11 | 10 | a1i | |
12 | 9 11 | cncfco | |
13 | 1 2 3 12 | evthicc | |
14 | 13 | simpld | |
15 | cncff | |
|
16 | ffun | |
|
17 | 4 15 16 | 3syl | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | fdm | |
|
21 | 4 15 20 | 3syl | |
22 | 21 | eqcomd | |
23 | 22 | adantr | |
24 | 19 23 | eleqtrd | |
25 | fvco | |
|
26 | 18 24 25 | syl2anc | |
27 | 26 | adantlr | |
28 | 17 | adantr | |
29 | simpr | |
|
30 | 22 | adantr | |
31 | 29 30 | eleqtrd | |
32 | fvco | |
|
33 | 28 31 32 | syl2anc | |
34 | 33 | adantr | |
35 | 27 34 | breq12d | |
36 | 35 | ralbidva | |
37 | 36 | rexbidva | |
38 | 14 37 | mpbid | |
39 | 13 | simprd | |
40 | 17 | adantr | |
41 | simpr | |
|
42 | 22 | adantr | |
43 | 41 42 | eleqtrd | |
44 | fvco | |
|
45 | 40 43 44 | syl2anc | |
46 | 45 | adantr | |
47 | 17 | adantr | |
48 | simpr | |
|
49 | 22 | adantr | |
50 | 48 49 | eleqtrd | |
51 | fvco | |
|
52 | 47 50 51 | syl2anc | |
53 | 52 | adantlr | |
54 | 46 53 | breq12d | |
55 | 54 | ralbidva | |
56 | 55 | rexbidva | |
57 | 39 56 | mpbid | |
58 | 38 57 | jca | |