Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013) (Revised by Mario Carneiro, 24-Jun-2015) (Proof shortened by AV, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fiun.1 | |
|
fiun.2 | |
||
Assertion | f1iun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiun.1 | |
|
2 | fiun.2 | |
|
3 | vex | |
|
4 | eqeq1 | |
|
5 | 4 | rexbidv | |
6 | 3 5 | elab | |
7 | r19.29 | |
|
8 | nfv | |
|
9 | nfre1 | |
|
10 | 9 | nfab | |
11 | nfv | |
|
12 | 10 11 | nfralw | |
13 | 8 12 | nfan | |
14 | f1eq1 | |
|
15 | 14 | biimparc | |
16 | df-f1 | |
|
17 | ffun | |
|
18 | 17 | anim1i | |
19 | 16 18 | sylbi | |
20 | 15 19 | syl | |
21 | 20 | adantlr | |
22 | f1f | |
|
23 | 1 | fiunlem | |
24 | 22 23 | sylanl1 | |
25 | 21 24 | jca | |
26 | 25 | a1i | |
27 | 13 26 | rexlimi | |
28 | 7 27 | syl | |
29 | 6 28 | sylan2b | |
30 | 29 | ralrimiva | |
31 | fun11uni | |
|
32 | 30 31 | syl | |
33 | 32 | simpld | |
34 | 2 | dfiun2 | |
35 | 34 | funeqi | |
36 | 33 35 | sylibr | |
37 | 3 | eldm2 | |
38 | f1dm | |
|
39 | 38 | eleq2d | |
40 | 37 39 | bitr3id | |
41 | 40 | adantr | |
42 | 41 | ralrexbid | |
43 | eliun | |
|
44 | 43 | exbii | |
45 | 3 | eldm2 | |
46 | rexcom4 | |
|
47 | 44 45 46 | 3bitr4i | |
48 | eliun | |
|
49 | 42 47 48 | 3bitr4g | |
50 | 49 | eqrdv | |
51 | df-fn | |
|
52 | 36 50 51 | sylanbrc | |
53 | rniun | |
|
54 | 22 | frnd | |
55 | 54 | adantr | |
56 | 55 | ralimi | |
57 | iunss | |
|
58 | 56 57 | sylibr | |
59 | 53 58 | eqsstrid | |
60 | df-f | |
|
61 | 52 59 60 | sylanbrc | |
62 | 32 | simprd | |
63 | 34 | cnveqi | |
64 | 63 | funeqi | |
65 | 62 64 | sylibr | |
66 | df-f1 | |
|
67 | 61 65 66 | sylanbrc | |