Metamath Proof Explorer


Theorem f1iun

Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013) (Revised by Mario Carneiro, 24-Jun-2015) (Proof shortened by AV, 5-Nov-2023)

Ref Expression
Hypotheses fiun.1 x=yB=C
fiun.2 BV
Assertion f1iun xAB:D1-1SyABCCBxAB:xAD1-1S

Proof

Step Hyp Ref Expression
1 fiun.1 x=yB=C
2 fiun.2 BV
3 vex uV
4 eqeq1 z=uz=Bu=B
5 4 rexbidv z=uxAz=BxAu=B
6 3 5 elab uz|xAz=BxAu=B
7 r19.29 xAB:D1-1SyABCCBxAu=BxAB:D1-1SyABCCBu=B
8 nfv xFunuFunu-1
9 nfre1 xxAz=B
10 9 nfab _xz|xAz=B
11 nfv xuvvu
12 10 11 nfralw xvz|xAz=Buvvu
13 8 12 nfan xFunuFunu-1vz|xAz=Buvvu
14 f1eq1 u=Bu:D1-1SB:D1-1S
15 14 biimparc B:D1-1Su=Bu:D1-1S
16 df-f1 u:D1-1Su:DSFunu-1
17 ffun u:DSFunu
18 17 anim1i u:DSFunu-1FunuFunu-1
19 16 18 sylbi u:D1-1SFunuFunu-1
20 15 19 syl B:D1-1Su=BFunuFunu-1
21 20 adantlr B:D1-1SyABCCBu=BFunuFunu-1
22 f1f B:D1-1SB:DS
23 1 fiunlem B:DSyABCCBu=Bvz|xAz=Buvvu
24 22 23 sylanl1 B:D1-1SyABCCBu=Bvz|xAz=Buvvu
25 21 24 jca B:D1-1SyABCCBu=BFunuFunu-1vz|xAz=Buvvu
26 25 a1i xAB:D1-1SyABCCBu=BFunuFunu-1vz|xAz=Buvvu
27 13 26 rexlimi xAB:D1-1SyABCCBu=BFunuFunu-1vz|xAz=Buvvu
28 7 27 syl xAB:D1-1SyABCCBxAu=BFunuFunu-1vz|xAz=Buvvu
29 6 28 sylan2b xAB:D1-1SyABCCBuz|xAz=BFunuFunu-1vz|xAz=Buvvu
30 29 ralrimiva xAB:D1-1SyABCCBuz|xAz=BFunuFunu-1vz|xAz=Buvvu
31 fun11uni uz|xAz=BFunuFunu-1vz|xAz=BuvvuFunz|xAz=BFunz|xAz=B-1
32 30 31 syl xAB:D1-1SyABCCBFunz|xAz=BFunz|xAz=B-1
33 32 simpld xAB:D1-1SyABCCBFunz|xAz=B
34 2 dfiun2 xAB=z|xAz=B
35 34 funeqi FunxABFunz|xAz=B
36 33 35 sylibr xAB:D1-1SyABCCBFunxAB
37 3 eldm2 udomBvuvB
38 f1dm B:D1-1SdomB=D
39 38 eleq2d B:D1-1SudomBuD
40 37 39 bitr3id B:D1-1SvuvBuD
41 40 adantr B:D1-1SyABCCBvuvBuD
42 41 ralrexbid xAB:D1-1SyABCCBxAvuvBxAuD
43 eliun uvxABxAuvB
44 43 exbii vuvxABvxAuvB
45 3 eldm2 udomxABvuvxAB
46 rexcom4 xAvuvBvxAuvB
47 44 45 46 3bitr4i udomxABxAvuvB
48 eliun uxADxAuD
49 42 47 48 3bitr4g xAB:D1-1SyABCCBudomxABuxAD
50 49 eqrdv xAB:D1-1SyABCCBdomxAB=xAD
51 df-fn xABFnxADFunxABdomxAB=xAD
52 36 50 51 sylanbrc xAB:D1-1SyABCCBxABFnxAD
53 rniun ranxAB=xAranB
54 22 frnd B:D1-1SranBS
55 54 adantr B:D1-1SyABCCBranBS
56 55 ralimi xAB:D1-1SyABCCBxAranBS
57 iunss xAranBSxAranBS
58 56 57 sylibr xAB:D1-1SyABCCBxAranBS
59 53 58 eqsstrid xAB:D1-1SyABCCBranxABS
60 df-f xAB:xADSxABFnxADranxABS
61 52 59 60 sylanbrc xAB:D1-1SyABCCBxAB:xADS
62 32 simprd xAB:D1-1SyABCCBFunz|xAz=B-1
63 34 cnveqi xAB-1=z|xAz=B-1
64 63 funeqi FunxAB-1Funz|xAz=B-1
65 62 64 sylibr xAB:D1-1SyABCCBFunxAB-1
66 df-f1 xAB:xAD1-1SxAB:xADSFunxAB-1
67 61 65 66 sylanbrc xAB:D1-1SyABCCBxAB:xAD1-1S