Description: Lemma for fib0 , fib1 and fibp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fiblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2len | |
|
2 | 1 | eqcomi | |
3 | 2 | fveq2i | |
4 | 3 | imaeq2i | |
5 | 4 | ineq2i | |
6 | eqid | |
|
7 | 5 6 | mpteq12i | |
8 | elin | |
|
9 | 8 | simplbi | |
10 | wrdf | |
|
11 | 9 10 | syl | |
12 | 8 | simprbi | |
13 | hashf | |
|
14 | ffn | |
|
15 | elpreima | |
|
16 | 13 14 15 | mp2b | |
17 | 12 16 | sylib | |
18 | 17 | simprd | |
19 | 18 3 | eleqtrrdi | |
20 | uznn0sub | |
|
21 | 19 20 | syl | |
22 | 1zzd | |
|
23 | 1p1e2 | |
|
24 | 23 | fveq2i | |
25 | 19 24 | eleqtrrdi | |
26 | peano2uzr | |
|
27 | 22 25 26 | syl2anc | |
28 | nnuz | |
|
29 | 27 28 | eleqtrrdi | |
30 | 29 | nnred | |
31 | 2rp | |
|
32 | 31 | a1i | |
33 | 30 32 | ltsubrpd | |
34 | elfzo0 | |
|
35 | 21 29 33 34 | syl3anbrc | |
36 | 11 35 | ffvelcdmd | |
37 | fzo0end | |
|
38 | 29 37 | syl | |
39 | 11 38 | ffvelcdmd | |
40 | 36 39 | nn0addcld | |
41 | 7 40 | fmpti | |