Metamath Proof Explorer


Theorem fiblem

Description: Lemma for fib0 , fib1 and fibp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fiblem wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0

Proof

Step Hyp Ref Expression
1 s2len ⟨“01”⟩=2
2 1 eqcomi 2=⟨“01”⟩
3 2 fveq2i 2=⟨“01”⟩
4 3 imaeq2i .-12=.-1⟨“01”⟩
5 4 ineq2i Word0.-12=Word0.-1⟨“01”⟩
6 eqid ww2+ww1=ww2+ww1
7 5 6 mpteq12i wWord0.-12ww2+ww1=wWord0.-1⟨“01”⟩ww2+ww1
8 elin wWord0.-1⟨“01”⟩wWord0w.-1⟨“01”⟩
9 8 simplbi wWord0.-1⟨“01”⟩wWord0
10 wrdf wWord0w:0..^w0
11 9 10 syl wWord0.-1⟨“01”⟩w:0..^w0
12 8 simprbi wWord0.-1⟨“01”⟩w.-1⟨“01”⟩
13 hashf .:V0+∞
14 ffn .:V0+∞.FnV
15 elpreima .FnVw.-1⟨“01”⟩wVw⟨“01”⟩
16 13 14 15 mp2b w.-1⟨“01”⟩wVw⟨“01”⟩
17 12 16 sylib wWord0.-1⟨“01”⟩wVw⟨“01”⟩
18 17 simprd wWord0.-1⟨“01”⟩w⟨“01”⟩
19 18 3 eleqtrrdi wWord0.-1⟨“01”⟩w2
20 uznn0sub w2w20
21 19 20 syl wWord0.-1⟨“01”⟩w20
22 1zzd wWord0.-1⟨“01”⟩1
23 1p1e2 1+1=2
24 23 fveq2i 1+1=2
25 19 24 eleqtrrdi wWord0.-1⟨“01”⟩w1+1
26 peano2uzr 1w1+1w1
27 22 25 26 syl2anc wWord0.-1⟨“01”⟩w1
28 nnuz =1
29 27 28 eleqtrrdi wWord0.-1⟨“01”⟩w
30 29 nnred wWord0.-1⟨“01”⟩w
31 2rp 2+
32 31 a1i wWord0.-1⟨“01”⟩2+
33 30 32 ltsubrpd wWord0.-1⟨“01”⟩w2<w
34 elfzo0 w20..^ww20ww2<w
35 21 29 33 34 syl3anbrc wWord0.-1⟨“01”⟩w20..^w
36 11 35 ffvelcdmd wWord0.-1⟨“01”⟩ww20
37 fzo0end ww10..^w
38 29 37 syl wWord0.-1⟨“01”⟩w10..^w
39 11 38 ffvelcdmd wWord0.-1⟨“01”⟩ww10
40 36 39 nn0addcld wWord0.-1⟨“01”⟩ww2+ww10
41 7 40 fmpti wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0