Description: Lemma for fin1a2 . In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fin1a2lem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfin2 | |
|
2 | inss2 | |
|
3 | 1 2 | eqsstri | |
4 | peano2 | |
|
5 | 3 4 | sselid | |
6 | 5 | 3ad2ant3 | |
7 | 4 | 3ad2ant3 | |
8 | breq1 | |
|
9 | 8 | elrab | |
10 | simprr | |
|
11 | simpl2 | |
|
12 | simprl | |
|
13 | 11 12 | sseldd | |
14 | finnum | |
|
15 | 13 14 | syl | |
16 | simpl3 | |
|
17 | 3 16 | sselid | |
18 | finnum | |
|
19 | 17 18 | syl | |
20 | carddom2 | |
|
21 | 15 19 20 | syl2anc | |
22 | 10 21 | mpbird | |
23 | 22 | ex | |
24 | cardnn | |
|
25 | 24 | sseq2d | |
26 | cardon | |
|
27 | nnon | |
|
28 | onsssuc | |
|
29 | 26 27 28 | sylancr | |
30 | 25 29 | bitrd | |
31 | 30 | 3ad2ant3 | |
32 | 23 31 | sylibd | |
33 | 9 32 | biimtrid | |
34 | elrabi | |
|
35 | elrabi | |
|
36 | ssel | |
|
37 | ssel | |
|
38 | 36 37 | anim12d | |
39 | 38 | imp | |
40 | 39 | 3ad2antl2 | |
41 | sorpssi | |
|
42 | 41 | 3ad2antl1 | |
43 | finnum | |
|
44 | carden2 | |
|
45 | 14 43 44 | syl2an | |
46 | 45 | adantr | |
47 | fin23lem25 | |
|
48 | 47 | 3expa | |
49 | 48 | biimpd | |
50 | 46 49 | sylbid | |
51 | 40 42 50 | syl2anc | |
52 | fveq2 | |
|
53 | 51 52 | impbid1 | |
54 | 53 | ex | |
55 | 34 35 54 | syl2ani | |
56 | 33 55 | dom2d | |
57 | 7 56 | mpd | |
58 | domfi | |
|
59 | 6 57 58 | syl2anc | |