Metamath Proof Explorer


Theorem fin1a2lem9

Description: Lemma for fin1a2 . In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fin1a2lem9 [⊂]OrXXFinAωbX|bAFin

Proof

Step Hyp Ref Expression
1 onfin2 ω=OnFin
2 inss2 OnFinFin
3 1 2 eqsstri ωFin
4 peano2 AωsucAω
5 3 4 sselid AωsucAFin
6 5 3ad2ant3 [⊂]OrXXFinAωsucAFin
7 4 3ad2ant3 [⊂]OrXXFinAωsucAω
8 breq1 b=cbAcA
9 8 elrab cbX|bAcXcA
10 simprr [⊂]OrXXFinAωcXcAcA
11 simpl2 [⊂]OrXXFinAωcXcAXFin
12 simprl [⊂]OrXXFinAωcXcAcX
13 11 12 sseldd [⊂]OrXXFinAωcXcAcFin
14 finnum cFincdomcard
15 13 14 syl [⊂]OrXXFinAωcXcAcdomcard
16 simpl3 [⊂]OrXXFinAωcXcAAω
17 3 16 sselid [⊂]OrXXFinAωcXcAAFin
18 finnum AFinAdomcard
19 17 18 syl [⊂]OrXXFinAωcXcAAdomcard
20 carddom2 cdomcardAdomcardcardccardAcA
21 15 19 20 syl2anc [⊂]OrXXFinAωcXcAcardccardAcA
22 10 21 mpbird [⊂]OrXXFinAωcXcAcardccardA
23 22 ex [⊂]OrXXFinAωcXcAcardccardA
24 cardnn AωcardA=A
25 24 sseq2d AωcardccardAcardcA
26 cardon cardcOn
27 nnon AωAOn
28 onsssuc cardcOnAOncardcAcardcsucA
29 26 27 28 sylancr AωcardcAcardcsucA
30 25 29 bitrd AωcardccardAcardcsucA
31 30 3ad2ant3 [⊂]OrXXFinAωcardccardAcardcsucA
32 23 31 sylibd [⊂]OrXXFinAωcXcAcardcsucA
33 9 32 biimtrid [⊂]OrXXFinAωcbX|bAcardcsucA
34 elrabi cbX|bAcX
35 elrabi dbX|bAdX
36 ssel XFincXcFin
37 ssel XFindXdFin
38 36 37 anim12d XFincXdXcFindFin
39 38 imp XFincXdXcFindFin
40 39 3ad2antl2 [⊂]OrXXFinAωcXdXcFindFin
41 sorpssi [⊂]OrXcXdXcddc
42 41 3ad2antl1 [⊂]OrXXFinAωcXdXcddc
43 finnum dFinddomcard
44 carden2 cdomcardddomcardcardc=carddcd
45 14 43 44 syl2an cFindFincardc=carddcd
46 45 adantr cFindFincddccardc=carddcd
47 fin23lem25 cFindFincddccdc=d
48 47 3expa cFindFincddccdc=d
49 48 biimpd cFindFincddccdc=d
50 46 49 sylbid cFindFincddccardc=carddc=d
51 40 42 50 syl2anc [⊂]OrXXFinAωcXdXcardc=carddc=d
52 fveq2 c=dcardc=cardd
53 51 52 impbid1 [⊂]OrXXFinAωcXdXcardc=carddc=d
54 53 ex [⊂]OrXXFinAωcXdXcardc=carddc=d
55 34 35 54 syl2ani [⊂]OrXXFinAωcbX|bAdbX|bAcardc=carddc=d
56 33 55 dom2d [⊂]OrXXFinAωsucAωbX|bAsucA
57 7 56 mpd [⊂]OrXXFinAωbX|bAsucA
58 domfi sucAFinbX|bAsucAbX|bAFin
59 6 57 58 syl2anc [⊂]OrXXFinAωbX|bAFin