Metamath Proof Explorer


Theorem finsumvtxdg2ssteplem4

Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 12-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V=VtxG
finsumvtxdg2sstep.e E=iEdgG
finsumvtxdg2sstep.k K=VN
finsumvtxdg2sstep.i I=idomE|NEi
finsumvtxdg2sstep.p P=EI
finsumvtxdg2sstep.s S=KP
finsumvtxdg2ssteplem.j J=idomE|NEi
Assertion finsumvtxdg2ssteplem4 GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+J+idomE|Ei=N=2P+J

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V=VtxG
2 finsumvtxdg2sstep.e E=iEdgG
3 finsumvtxdg2sstep.k K=VN
4 finsumvtxdg2sstep.i I=idomE|NEi
5 finsumvtxdg2sstep.p P=EI
6 finsumvtxdg2sstep.s S=KP
7 finsumvtxdg2ssteplem.j J=idomE|NEi
8 1 2 3 4 5 6 7 vtxdginducedm1fi EFinvVNVtxDegGv=VtxDegSv+iJ|vEi
9 8 ad2antll GUPGraphNVVFinEFinvVNVtxDegGv=VtxDegSv+iJ|vEi
10 9 sumeq2d GUPGraphNVVFinEFinvVNVtxDegGv=vVNVtxDegSv+iJ|vEi
11 diffi VFinVNFin
12 11 adantr VFinEFinVNFin
13 12 adantl GUPGraphNVVFinEFinVNFin
14 5 dmeqi domP=domEI
15 finresfin EFinEIFin
16 dmfi EIFindomEIFin
17 15 16 syl EFindomEIFin
18 14 17 eqeltrid EFindomPFin
19 18 ad2antll GUPGraphNVVFinEFindomPFin
20 3 eqcomi VN=K
21 20 eleq2i vVNvK
22 21 biimpi vVNvK
23 6 fveq2i VtxS=VtxKP
24 1 fvexi VV
25 24 difexi VNV
26 3 25 eqeltri KV
27 2 fvexi EV
28 27 resex EIV
29 5 28 eqeltri PV
30 26 29 opvtxfvi VtxKP=K
31 23 30 eqtr2i K=VtxS
32 1 2 3 4 5 6 vtxdginducedm1lem1 iEdgS=P
33 32 eqcomi P=iEdgS
34 eqid domP=domP
35 31 33 34 vtxdgfisnn0 domPFinvKVtxDegSv0
36 35 nn0cnd domPFinvKVtxDegSv
37 19 22 36 syl2an GUPGraphNVVFinEFinvVNVtxDegSv
38 dmfi EFindomEFin
39 rabfi domEFinidomE|NEiFin
40 38 39 syl EFinidomE|NEiFin
41 7 40 eqeltrid EFinJFin
42 rabfi JFiniJ|vEiFin
43 hashcl iJ|vEiFiniJ|vEi0
44 41 42 43 3syl EFiniJ|vEi0
45 44 nn0cnd EFiniJ|vEi
46 45 ad2antll GUPGraphNVVFinEFiniJ|vEi
47 46 adantr GUPGraphNVVFinEFinvVNiJ|vEi
48 13 37 47 fsumadd GUPGraphNVVFinEFinvVNVtxDegSv+iJ|vEi=vVNVtxDegSv+vVNiJ|vEi
49 10 48 eqtrd GUPGraphNVVFinEFinvVNVtxDegGv=vVNVtxDegSv+vVNiJ|vEi
50 3 sumeq1i vKVtxDegSv=vVNVtxDegSv
51 50 eqeq1i vKVtxDegSv=2PvVNVtxDegSv=2P
52 oveq1 vVNVtxDegSv=2PvVNVtxDegSv+vVNiJ|vEi=2P+vVNiJ|vEi
53 51 52 sylbi vKVtxDegSv=2PvVNVtxDegSv+vVNiJ|vEi=2P+vVNiJ|vEi
54 49 53 sylan9eq GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv=2P+vVNiJ|vEi
55 54 oveq1d GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+J+idomE|Ei=N=2P+vVNiJ|vEi+J+idomE|Ei=N
56 45 adantl VFinEFiniJ|vEi
57 56 adantr VFinEFinvVNiJ|vEi
58 12 57 fsumcl VFinEFinvVNiJ|vEi
59 hashcl JFinJ0
60 41 59 syl EFinJ0
61 60 nn0cnd EFinJ
62 61 adantl VFinEFinJ
63 rabfi domEFinidomE|Ei=NFin
64 hashcl idomE|Ei=NFinidomE|Ei=N0
65 38 63 64 3syl EFinidomE|Ei=N0
66 65 nn0cnd EFinidomE|Ei=N
67 66 adantl VFinEFinidomE|Ei=N
68 58 62 67 add12d VFinEFinvVNiJ|vEi+J+idomE|Ei=N=J+vVNiJ|vEi+idomE|Ei=N
69 68 adantl GUPGraphNVVFinEFinvVNiJ|vEi+J+idomE|Ei=N=J+vVNiJ|vEi+idomE|Ei=N
70 1 2 3 4 5 6 7 finsumvtxdg2ssteplem3 GUPGraphNVVFinEFinvVNiJ|vEi+idomE|Ei=N=J
71 70 oveq2d GUPGraphNVVFinEFinJ+vVNiJ|vEi+idomE|Ei=N=J+J
72 61 2timesd EFin2J=J+J
73 72 eqcomd EFinJ+J=2J
74 73 ad2antll GUPGraphNVVFinEFinJ+J=2J
75 69 71 74 3eqtrd GUPGraphNVVFinEFinvVNiJ|vEi+J+idomE|Ei=N=2J
76 75 oveq2d GUPGraphNVVFinEFin2P+vVNiJ|vEi+J+idomE|Ei=N=2P+2J
77 2cnd EFin2
78 5 15 eqeltrid EFinPFin
79 hashcl PFinP0
80 78 79 syl EFinP0
81 80 nn0cnd EFinP
82 77 81 mulcld EFin2P
83 82 ad2antll GUPGraphNVVFinEFin2P
84 58 adantl GUPGraphNVVFinEFinvVNiJ|vEi
85 61 66 addcld EFinJ+idomE|Ei=N
86 85 ad2antll GUPGraphNVVFinEFinJ+idomE|Ei=N
87 83 84 86 addassd GUPGraphNVVFinEFin2P+vVNiJ|vEi+J+idomE|Ei=N=2P+vVNiJ|vEi+J+idomE|Ei=N
88 2cnd GUPGraphNVVFinEFin2
89 81 ad2antll GUPGraphNVVFinEFinP
90 61 ad2antll GUPGraphNVVFinEFinJ
91 88 89 90 adddid GUPGraphNVVFinEFin2P+J=2P+2J
92 76 87 91 3eqtr4d GUPGraphNVVFinEFin2P+vVNiJ|vEi+J+idomE|Ei=N=2P+J
93 92 adantr GUPGraphNVVFinEFinvKVtxDegSv=2P2P+vVNiJ|vEi+J+idomE|Ei=N=2P+J
94 55 93 eqtrd GUPGraphNVVFinEFinvKVtxDegSv=2PvVNVtxDegGv+J+idomE|Ei=N=2P+J