| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 |  | dfss3 |  | 
						
							| 3 |  | eluni2 |  | 
						
							| 4 | 3 | ralbii |  | 
						
							| 5 | 2 4 | sylbb |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | eleq2 |  | 
						
							| 8 | 7 | ac6sfi |  | 
						
							| 9 | 1 6 8 | syl2anc |  | 
						
							| 10 |  | fimass |  | 
						
							| 11 |  | vex |  | 
						
							| 12 | 11 | imaex |  | 
						
							| 13 | 12 | elpw |  | 
						
							| 14 | 10 13 | sylibr |  | 
						
							| 15 | 14 | ad2antrl |  | 
						
							| 16 |  | ffun |  | 
						
							| 17 | 16 | ad2antrl |  | 
						
							| 18 |  | simplr |  | 
						
							| 19 |  | imafi |  | 
						
							| 20 | 17 18 19 | syl2anc |  | 
						
							| 21 | 15 20 | elind |  | 
						
							| 22 |  | ffn |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | ssidd |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 |  | fnfvima |  | 
						
							| 27 | 23 24 25 26 | syl3anc |  | 
						
							| 28 |  | elssuni |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 29 | sseld |  | 
						
							| 31 | 30 | ralimdva |  | 
						
							| 32 | 31 | imp |  | 
						
							| 33 |  | dfss3 |  | 
						
							| 34 | 32 33 | sylibr |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | unieq |  | 
						
							| 37 | 36 | sseq2d |  | 
						
							| 38 | 37 | rspcev |  | 
						
							| 39 | 21 35 38 | syl2anc |  | 
						
							| 40 | 9 39 | exlimddv |  |