Metamath Proof Explorer


Theorem fldiv4p1lem1div2

Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)

Ref Expression
Assertion fldiv4p1lem1div2 N=3N5N4+1N12

Proof

Step Hyp Ref Expression
1 1le1 11
2 1 a1i N=311
3 fvoveq1 N=3N4=34
4 3lt4 3<4
5 3nn0 30
6 4nn 4
7 divfl0 3043<434=0
8 5 6 7 mp2an 3<434=0
9 4 8 mpbi 34=0
10 3 9 eqtrdi N=3N4=0
11 10 oveq1d N=3N4+1=0+1
12 0p1e1 0+1=1
13 11 12 eqtrdi N=3N4+1=1
14 oveq1 N=3N1=31
15 3m1e2 31=2
16 14 15 eqtrdi N=3N1=2
17 16 oveq1d N=3N12=22
18 2div2e1 22=1
19 17 18 eqtrdi N=3N12=1
20 2 13 19 3brtr4d N=3N4+1N12
21 uzp1 N5N=5N5+1
22 2re 2
23 22 leidi 22
24 23 a1i N=522
25 fvoveq1 N=5N4=54
26 df-5 5=4+1
27 26 oveq1i 54=4+14
28 4cn 4
29 ax-1cn 1
30 4ne0 40
31 28 29 28 30 divdiri 4+14=44+14
32 28 30 dividi 44=1
33 32 oveq1i 44+14=1+14
34 27 31 33 3eqtri 54=1+14
35 34 fveq2i 54=1+14
36 1re 1
37 0le1 01
38 4re 4
39 4pos 0<4
40 divge0 10140<4014
41 36 37 38 39 40 mp4an 014
42 1lt4 1<4
43 recgt1 40<41<414<1
44 38 39 43 mp2an 1<414<1
45 42 44 mpbi 14<1
46 1z 1
47 38 30 rereccli 14
48 flbi2 1141+14=101414<1
49 46 47 48 mp2an 1+14=101414<1
50 41 45 49 mpbir2an 1+14=1
51 35 50 eqtri 54=1
52 25 51 eqtrdi N=5N4=1
53 52 oveq1d N=5N4+1=1+1
54 1p1e2 1+1=2
55 53 54 eqtrdi N=5N4+1=2
56 oveq1 N=5N1=51
57 5m1e4 51=4
58 56 57 eqtrdi N=5N1=4
59 58 oveq1d N=5N12=42
60 4d2e2 42=2
61 59 60 eqtrdi N=5N12=2
62 24 55 61 3brtr4d N=5N4+1N12
63 eluz2 N66N6N
64 zre NN
65 id NN
66 38 a1i N4
67 30 a1i N40
68 65 66 67 redivcld NN4
69 flle N4N4N4
70 64 68 69 3syl NN4N4
71 70 adantr N6NN4N4
72 68 flcld NN4
73 72 zred NN4
74 36 a1i N1
75 73 68 74 3jca NN4N41
76 64 75 syl NN4N41
77 76 adantr N6NN4N41
78 leadd1 N4N41N4N4N4+1N4+1
79 77 78 syl N6NN4N4N4+1N4+1
80 71 79 mpbid N6NN4+1N4+1
81 div4p1lem1div2 N6NN4+1N12
82 64 81 sylan N6NN4+1N12
83 peano2re N4N4+1
84 73 83 syl NN4+1
85 peano2re N4N4+1
86 68 85 syl NN4+1
87 peano2rem NN1
88 87 rehalfcld NN12
89 84 86 88 3jca NN4+1N4+1N12
90 64 89 syl NN4+1N4+1N12
91 90 adantr N6NN4+1N4+1N12
92 letr N4+1N4+1N12N4+1N4+1N4+1N12N4+1N12
93 91 92 syl N6NN4+1N4+1N4+1N12N4+1N12
94 80 82 93 mp2and N6NN4+1N12
95 94 3adant1 6N6NN4+1N12
96 63 95 sylbi N6N4+1N12
97 5p1e6 5+1=6
98 97 fveq2i 5+1=6
99 96 98 eleq2s N5+1N4+1N12
100 62 99 jaoi N=5N5+1N4+1N12
101 21 100 syl N5N4+1N12
102 20 101 jaoi N=3N5N4+1N12