Metamath Proof Explorer


Theorem flimopn

Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009) (Proof shortened by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion flimopn JTopOnXFFilXAJfLimFAXxJAxxF

Proof

Step Hyp Ref Expression
1 elflim JTopOnXFFilXAJfLimFAXneiJAF
2 dfss3 neiJAFyneiJAyF
3 topontop JTopOnXJTop
4 3 ad2antrr JTopOnXFFilXAXJTop
5 opnneip JTopxJAxxneiJA
6 5 3expb JTopxJAxxneiJA
7 4 6 sylan JTopOnXFFilXAXxJAxxneiJA
8 eleq1 y=xyFxF
9 8 rspcv xneiJAyneiJAyFxF
10 7 9 syl JTopOnXFFilXAXxJAxyneiJAyFxF
11 10 expr JTopOnXFFilXAXxJAxyneiJAyFxF
12 11 com23 JTopOnXFFilXAXxJyneiJAyFAxxF
13 12 ralrimdva JTopOnXFFilXAXyneiJAyFxJAxxF
14 simpr JTopOnXFFilXAXyneiJAyneiJA
15 3 ad3antrrr JTopOnXFFilXAXyneiJAJTop
16 simplr JTopOnXFFilXAXyneiJAAX
17 toponuni JTopOnXX=J
18 17 ad3antrrr JTopOnXFFilXAXyneiJAX=J
19 16 18 eleqtrd JTopOnXFFilXAXyneiJAAJ
20 19 snssd JTopOnXFFilXAXyneiJAAJ
21 eqid J=J
22 21 neii1 JTopyneiJAyJ
23 4 22 sylan JTopOnXFFilXAXyneiJAyJ
24 21 neiint JTopAJyJyneiJAAintJy
25 15 20 23 24 syl3anc JTopOnXFFilXAXyneiJAyneiJAAintJy
26 14 25 mpbid JTopOnXFFilXAXyneiJAAintJy
27 snssg AXAintJyAintJy
28 27 ad2antlr JTopOnXFFilXAXyneiJAAintJyAintJy
29 26 28 mpbird JTopOnXFFilXAXyneiJAAintJy
30 21 ntropn JTopyJintJyJ
31 15 23 30 syl2anc JTopOnXFFilXAXyneiJAintJyJ
32 eleq2 x=intJyAxAintJy
33 eleq1 x=intJyxFintJyF
34 32 33 imbi12d x=intJyAxxFAintJyintJyF
35 34 rspcv intJyJxJAxxFAintJyintJyF
36 31 35 syl JTopOnXFFilXAXyneiJAxJAxxFAintJyintJyF
37 29 36 mpid JTopOnXFFilXAXyneiJAxJAxxFintJyF
38 simpllr JTopOnXFFilXAXyneiJAFFilX
39 21 ntrss2 JTopyJintJyy
40 15 23 39 syl2anc JTopOnXFFilXAXyneiJAintJyy
41 23 18 sseqtrrd JTopOnXFFilXAXyneiJAyX
42 filss FFilXintJyFyXintJyyyF
43 42 3exp2 FFilXintJyFyXintJyyyF
44 43 com24 FFilXintJyyyXintJyFyF
45 38 40 41 44 syl3c JTopOnXFFilXAXyneiJAintJyFyF
46 37 45 syld JTopOnXFFilXAXyneiJAxJAxxFyF
47 46 ralrimdva JTopOnXFFilXAXxJAxxFyneiJAyF
48 13 47 impbid JTopOnXFFilXAXyneiJAyFxJAxxF
49 2 48 bitrid JTopOnXFFilXAXneiJAFxJAxxF
50 49 pm5.32da JTopOnXFFilXAXneiJAFAXxJAxxF
51 1 50 bitrd JTopOnXFFilXAJfLimFAXxJAxxF