Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009) (Proof shortened by Mario Carneiro, 9-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | flimopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elflim | |
|
2 | dfss3 | |
|
3 | topontop | |
|
4 | 3 | ad2antrr | |
5 | opnneip | |
|
6 | 5 | 3expb | |
7 | 4 6 | sylan | |
8 | eleq1 | |
|
9 | 8 | rspcv | |
10 | 7 9 | syl | |
11 | 10 | expr | |
12 | 11 | com23 | |
13 | 12 | ralrimdva | |
14 | simpr | |
|
15 | 3 | ad3antrrr | |
16 | simplr | |
|
17 | toponuni | |
|
18 | 17 | ad3antrrr | |
19 | 16 18 | eleqtrd | |
20 | 19 | snssd | |
21 | eqid | |
|
22 | 21 | neii1 | |
23 | 4 22 | sylan | |
24 | 21 | neiint | |
25 | 15 20 23 24 | syl3anc | |
26 | 14 25 | mpbid | |
27 | snssg | |
|
28 | 27 | ad2antlr | |
29 | 26 28 | mpbird | |
30 | 21 | ntropn | |
31 | 15 23 30 | syl2anc | |
32 | eleq2 | |
|
33 | eleq1 | |
|
34 | 32 33 | imbi12d | |
35 | 34 | rspcv | |
36 | 31 35 | syl | |
37 | 29 36 | mpid | |
38 | simpllr | |
|
39 | 21 | ntrss2 | |
40 | 15 23 39 | syl2anc | |
41 | 23 18 | sseqtrrd | |
42 | filss | |
|
43 | 42 | 3exp2 | |
44 | 43 | com24 | |
45 | 38 40 41 44 | syl3c | |
46 | 37 45 | syld | |
47 | 46 | ralrimdva | |
48 | 13 47 | impbid | |
49 | 2 48 | bitrid | |
50 | 49 | pm5.32da | |
51 | 1 50 | bitrd | |