Metamath Proof Explorer


Theorem fmla1

Description: The valid Godel formulas of height 1 is the set of all formulas of the form ( a |g b ) and A.g k a with atoms a , b of the form x e. y . (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmla1 Fmla1𝑜=×ω×ωx|iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 fveq2i Fmla1𝑜=Fmlasuc
3 peano1 ω
4 fmlasuc ωFmlasuc=Fmlax|pFmlaqFmlax=p𝑔qkωx=𝑔kp
5 3 4 ax-mp Fmlasuc=Fmlax|pFmlaqFmlax=p𝑔qkωx=𝑔kp
6 fmla0xp Fmla=×ω×ω
7 fmla0 Fmla=yV|iωjωy=i𝑔j
8 7 rexeqi pFmlaqFmlax=p𝑔qkωx=𝑔kppyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
9 eqeq1 y=py=i𝑔jp=i𝑔j
10 9 2rexbidv y=piωjωy=i𝑔jiωjωp=i𝑔j
11 10 elrab pyV|iωjωy=i𝑔jpViωjωp=i𝑔j
12 oveq1 p=i𝑔jp𝑔q=i𝑔j𝑔q
13 12 eqeq2d p=i𝑔jx=p𝑔qx=i𝑔j𝑔q
14 13 rexbidv p=i𝑔jqFmlax=p𝑔qqFmlax=i𝑔j𝑔q
15 eqidd p=i𝑔jk=k
16 id p=i𝑔jp=i𝑔j
17 15 16 goaleq12d p=i𝑔j𝑔kp=𝑔ki𝑔j
18 17 eqeq2d p=i𝑔jx=𝑔kpx=𝑔ki𝑔j
19 18 rexbidv p=i𝑔jkωx=𝑔kpkωx=𝑔ki𝑔j
20 14 19 orbi12d p=i𝑔jqFmlax=p𝑔qkωx=𝑔kpqFmlax=i𝑔j𝑔qkωx=𝑔ki𝑔j
21 eqeq1 z=qz=k𝑔lq=k𝑔l
22 21 2rexbidv z=qkωlωz=k𝑔lkωlωq=k𝑔l
23 fmla0 Fmla=zV|kωlωz=k𝑔l
24 22 23 elrab2 qFmlaqVkωlωq=k𝑔l
25 oveq2 q=k𝑔li𝑔j𝑔q=i𝑔j𝑔k𝑔l
26 25 eqeq2d q=k𝑔lx=i𝑔j𝑔qx=i𝑔j𝑔k𝑔l
27 26 biimpcd x=i𝑔j𝑔qq=k𝑔lx=i𝑔j𝑔k𝑔l
28 27 reximdv x=i𝑔j𝑔qlωq=k𝑔llωx=i𝑔j𝑔k𝑔l
29 28 reximdv x=i𝑔j𝑔qkωlωq=k𝑔lkωlωx=i𝑔j𝑔k𝑔l
30 29 com12 kωlωq=k𝑔lx=i𝑔j𝑔qkωlωx=i𝑔j𝑔k𝑔l
31 24 30 simplbiim qFmlax=i𝑔j𝑔qkωlωx=i𝑔j𝑔k𝑔l
32 31 rexlimiv qFmlax=i𝑔j𝑔qkωlωx=i𝑔j𝑔k𝑔l
33 32 orim1i qFmlax=i𝑔j𝑔qkωx=𝑔ki𝑔jkωlωx=i𝑔j𝑔k𝑔lkωx=𝑔ki𝑔j
34 r19.43 kωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔jkωlωx=i𝑔j𝑔k𝑔lkωx=𝑔ki𝑔j
35 33 34 sylibr qFmlax=i𝑔j𝑔qkωx=𝑔ki𝑔jkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
36 20 35 syl6bi p=i𝑔jqFmlax=p𝑔qkωx=𝑔kpkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
37 36 com12 qFmlax=p𝑔qkωx=𝑔kpp=i𝑔jkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
38 37 reximdv qFmlax=p𝑔qkωx=𝑔kpjωp=i𝑔jjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
39 38 reximdv qFmlax=p𝑔qkωx=𝑔kpiωjωp=i𝑔jiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
40 39 com12 iωjωp=i𝑔jqFmlax=p𝑔qkωx=𝑔kpiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
41 11 40 simplbiim pyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kpiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
42 41 rexlimiv pyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kpiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
43 oveq1 i=mi𝑔j=m𝑔j
44 43 oveq1d i=mi𝑔j𝑔k𝑔l=m𝑔j𝑔k𝑔l
45 44 eqeq2d i=mx=i𝑔j𝑔k𝑔lx=m𝑔j𝑔k𝑔l
46 45 rexbidv i=mlωx=i𝑔j𝑔k𝑔llωx=m𝑔j𝑔k𝑔l
47 eqidd i=mk=k
48 47 43 goaleq12d i=m𝑔ki𝑔j=𝑔km𝑔j
49 48 eqeq2d i=mx=𝑔ki𝑔jx=𝑔km𝑔j
50 46 49 orbi12d i=mlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔jlωx=m𝑔j𝑔k𝑔lx=𝑔km𝑔j
51 50 rexbidv i=mkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔jkωlωx=m𝑔j𝑔k𝑔lx=𝑔km𝑔j
52 oveq2 j=nm𝑔j=m𝑔n
53 52 oveq1d j=nm𝑔j𝑔k𝑔l=m𝑔n𝑔k𝑔l
54 53 eqeq2d j=nx=m𝑔j𝑔k𝑔lx=m𝑔n𝑔k𝑔l
55 54 rexbidv j=nlωx=m𝑔j𝑔k𝑔llωx=m𝑔n𝑔k𝑔l
56 eqidd j=nk=k
57 56 52 goaleq12d j=n𝑔km𝑔j=𝑔km𝑔n
58 57 eqeq2d j=nx=𝑔km𝑔jx=𝑔km𝑔n
59 55 58 orbi12d j=nlωx=m𝑔j𝑔k𝑔lx=𝑔km𝑔jlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔n
60 59 rexbidv j=nkωlωx=m𝑔j𝑔k𝑔lx=𝑔km𝑔jkωlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔n
61 51 60 cbvrex2vw iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔jmωnωkωlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔n
62 oveq1 k=ok𝑔l=o𝑔l
63 62 oveq2d k=om𝑔n𝑔k𝑔l=m𝑔n𝑔o𝑔l
64 63 eqeq2d k=ox=m𝑔n𝑔k𝑔lx=m𝑔n𝑔o𝑔l
65 64 rexbidv k=olωx=m𝑔n𝑔k𝑔llωx=m𝑔n𝑔o𝑔l
66 id k=ok=o
67 eqidd k=om𝑔n=m𝑔n
68 66 67 goaleq12d k=o𝑔km𝑔n=𝑔om𝑔n
69 68 eqeq2d k=ox=𝑔km𝑔nx=𝑔om𝑔n
70 65 69 orbi12d k=olωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔nlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔n
71 70 cbvrexvw kωlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔noωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔n
72 3 ne0ii ω
73 r19.44zv ωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔n
74 72 73 ax-mp lωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔n
75 eqeq1 y=m𝑔ny=i𝑔jm𝑔n=i𝑔j
76 75 2rexbidv y=m𝑔niωjωy=i𝑔jiωjωm𝑔n=i𝑔j
77 ovexd mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nm𝑔nV
78 simpl mωnωmω
79 43 eqeq2d i=mm𝑔n=i𝑔jm𝑔n=m𝑔j
80 79 rexbidv i=mjωm𝑔n=i𝑔jjωm𝑔n=m𝑔j
81 80 adantl mωnωi=mjωm𝑔n=i𝑔jjωm𝑔n=m𝑔j
82 simpr mωnωnω
83 52 eqeq2d j=nm𝑔n=m𝑔jm𝑔n=m𝑔n
84 83 adantl mωnωj=nm𝑔n=m𝑔jm𝑔n=m𝑔n
85 eqidd mωnωm𝑔n=m𝑔n
86 82 84 85 rspcedvd mωnωjωm𝑔n=m𝑔j
87 78 81 86 rspcedvd mωnωiωjωm𝑔n=i𝑔j
88 87 ad5ant12 mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔niωjωm𝑔n=i𝑔j
89 76 77 88 elrabd mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nm𝑔nyV|iωjωy=i𝑔j
90 oveq1 p=m𝑔np𝑔q=m𝑔n𝑔q
91 90 eqeq2d p=m𝑔nx=p𝑔qx=m𝑔n𝑔q
92 91 rexbidv p=m𝑔nqFmlax=p𝑔qqFmlax=m𝑔n𝑔q
93 eqidd p=m𝑔nk=k
94 id p=m𝑔np=m𝑔n
95 93 94 goaleq12d p=m𝑔n𝑔kp=𝑔km𝑔n
96 95 eqeq2d p=m𝑔nx=𝑔kpx=𝑔km𝑔n
97 96 rexbidv p=m𝑔nkωx=𝑔kpkωx=𝑔km𝑔n
98 92 97 orbi12d p=m𝑔nqFmlax=p𝑔qkωx=𝑔kpqFmlax=m𝑔n𝑔qkωx=𝑔km𝑔n
99 98 adantl mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔np=m𝑔nqFmlax=p𝑔qkωx=𝑔kpqFmlax=m𝑔n𝑔qkωx=𝑔km𝑔n
100 ovexd mωnωoωlωo𝑔lV
101 simpr mωnωoωoω
102 101 adantr mωnωoωlωoω
103 oveq1 i=oi𝑔j=o𝑔j
104 103 eqeq2d i=oo𝑔l=i𝑔jo𝑔l=o𝑔j
105 104 rexbidv i=ojωo𝑔l=i𝑔jjωo𝑔l=o𝑔j
106 105 adantl mωnωoωlωi=ojωo𝑔l=i𝑔jjωo𝑔l=o𝑔j
107 simpr mωnωoωlωlω
108 oveq2 j=lo𝑔j=o𝑔l
109 108 eqeq2d j=lo𝑔l=o𝑔jo𝑔l=o𝑔l
110 109 adantl mωnωoωlωj=lo𝑔l=o𝑔jo𝑔l=o𝑔l
111 eqidd mωnωoωlωo𝑔l=o𝑔l
112 107 110 111 rspcedvd mωnωoωlωjωo𝑔l=o𝑔j
113 102 106 112 rspcedvd mωnωoωlωiωjωo𝑔l=i𝑔j
114 eqeq1 p=o𝑔lp=i𝑔jo𝑔l=i𝑔j
115 114 2rexbidv p=o𝑔liωjωp=i𝑔jiωjωo𝑔l=i𝑔j
116 fmla0 Fmla=pV|iωjωp=i𝑔j
117 115 116 elrab2 o𝑔lFmlao𝑔lViωjωo𝑔l=i𝑔j
118 100 113 117 sylanbrc mωnωoωlωo𝑔lFmla
119 118 adantr mωnωoωlωx=m𝑔n𝑔o𝑔lo𝑔lFmla
120 oveq2 q=o𝑔lm𝑔n𝑔q=m𝑔n𝑔o𝑔l
121 120 eqeq2d q=o𝑔lx=m𝑔n𝑔qx=m𝑔n𝑔o𝑔l
122 121 adantl mωnωoωlωx=m𝑔n𝑔o𝑔lq=o𝑔lx=m𝑔n𝑔qx=m𝑔n𝑔o𝑔l
123 simpr mωnωoωlωx=m𝑔n𝑔o𝑔lx=m𝑔n𝑔o𝑔l
124 119 122 123 rspcedvd mωnωoωlωx=m𝑔n𝑔o𝑔lqFmlax=m𝑔n𝑔q
125 124 ex mωnωoωlωx=m𝑔n𝑔o𝑔lqFmlax=m𝑔n𝑔q
126 102 adantr mωnωoωlωx=𝑔om𝑔noω
127 69 adantl mωnωoωlωx=𝑔om𝑔nk=ox=𝑔km𝑔nx=𝑔om𝑔n
128 simpr mωnωoωlωx=𝑔om𝑔nx=𝑔om𝑔n
129 126 127 128 rspcedvd mωnωoωlωx=𝑔om𝑔nkωx=𝑔km𝑔n
130 129 ex mωnωoωlωx=𝑔om𝑔nkωx=𝑔km𝑔n
131 125 130 orim12d mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nqFmlax=m𝑔n𝑔qkωx=𝑔km𝑔n
132 131 imp mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔nqFmlax=m𝑔n𝑔qkωx=𝑔km𝑔n
133 89 99 132 rspcedvd mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
134 133 ex mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
135 134 rexlimdva mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
136 74 135 biimtrrid mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
137 136 rexlimdva mωnωoωlωx=m𝑔n𝑔o𝑔lx=𝑔om𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
138 71 137 biimtrid mωnωkωlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
139 138 rexlimivv mωnωkωlωx=m𝑔n𝑔k𝑔lx=𝑔km𝑔npyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
140 61 139 sylbi iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔jpyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kp
141 42 140 impbii pyV|iωjωy=i𝑔jqFmlax=p𝑔qkωx=𝑔kpiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
142 8 141 bitri pFmlaqFmlax=p𝑔qkωx=𝑔kpiωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
143 142 abbii x|pFmlaqFmlax=p𝑔qkωx=𝑔kp=x|iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
144 6 143 uneq12i Fmlax|pFmlaqFmlax=p𝑔qkωx=𝑔kp=×ω×ωx|iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j
145 2 5 144 3eqtri Fmla1𝑜=×ω×ωx|iωjωkωlωx=i𝑔j𝑔k𝑔lx=𝑔ki𝑔j