Metamath Proof Explorer


Theorem fmlasuc

Description: The valid Godel formulas of height ( N + 1 ) , expressed by the valid Godel formulas of height N . (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmlasuc NωFmlasucN=FmlaNx|uFmlaNvFmlaNx=u𝑔viωx=𝑔iu

Proof

Step Hyp Ref Expression
1 fmlasuc0 NωFmlasucN=FmlaNx|ySatNzSatNx=1sty𝑔1stziωx=𝑔i1sty
2 eqid Sat=Sat
3 2 satf0op NωySatNzy=zzSatN
4 fveq2 z=w1stz=1stw
5 4 oveq2d z=w1sty𝑔1stz=1sty𝑔1stw
6 5 eqeq2d z=wx=1sty𝑔1stzx=1sty𝑔1stw
7 6 cbvrexvw zSatNx=1sty𝑔1stzwSatNx=1sty𝑔1stw
8 7 orbi1i zSatNx=1sty𝑔1stziωx=𝑔i1stywSatNx=1sty𝑔1stwiωx=𝑔i1sty
9 fmlafvel NωzFmlaNzSatN
10 9 biimprd NωzSatNzFmlaN
11 10 adantld Nωy=zzSatNzFmlaN
12 11 imp Nωy=zzSatNzFmlaN
13 vex zV
14 0ex V
15 13 14 op1std y=z1sty=z
16 15 eleq1d y=z1styFmlaNzFmlaN
17 16 ad2antrl Nωy=zzSatN1styFmlaNzFmlaN
18 12 17 mpbird Nωy=zzSatN1styFmlaN
19 18 3adant3 Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1sty1styFmlaN
20 oveq1 u=1styu𝑔v=1sty𝑔v
21 20 eqeq2d u=1styx=u𝑔vx=1sty𝑔v
22 21 rexbidv u=1styvFmlaNx=u𝑔vvFmlaNx=1sty𝑔v
23 eqidd u=1styi=i
24 id u=1styu=1sty
25 23 24 goaleq12d u=1sty𝑔iu=𝑔i1sty
26 25 eqeq2d u=1styx=𝑔iux=𝑔i1sty
27 26 rexbidv u=1styiωx=𝑔iuiωx=𝑔i1sty
28 22 27 orbi12d u=1styvFmlaNx=u𝑔viωx=𝑔iuvFmlaNx=1sty𝑔viωx=𝑔i1sty
29 28 adantl Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styu=1styvFmlaNx=u𝑔viωx=𝑔iuvFmlaNx=1sty𝑔viωx=𝑔i1sty
30 2 satf0op NωwSatNyw=yySatN
31 fmlafvel NωyFmlaNySatN
32 31 biimprd NωySatNyFmlaN
33 32 adantld Nωw=yySatNyFmlaN
34 33 imp Nωw=yySatNyFmlaN
35 vex yV
36 35 14 op1std w=y1stw=y
37 36 eleq1d w=y1stwFmlaNyFmlaN
38 37 ad2antrl Nωw=yySatN1stwFmlaNyFmlaN
39 34 38 mpbird Nωw=yySatN1stwFmlaN
40 39 adantr Nωw=yySatNx=z𝑔1stw1stwFmlaN
41 oveq2 v=1stwz𝑔v=z𝑔1stw
42 41 eqeq2d v=1stwx=z𝑔vx=z𝑔1stw
43 42 adantl Nωw=yySatNx=z𝑔1stwv=1stwx=z𝑔vx=z𝑔1stw
44 simpr Nωw=yySatNx=z𝑔1stwx=z𝑔1stw
45 40 43 44 rspcedvd Nωw=yySatNx=z𝑔1stwvFmlaNx=z𝑔v
46 45 exp31 Nωw=yySatNx=z𝑔1stwvFmlaNx=z𝑔v
47 46 exlimdv Nωyw=yySatNx=z𝑔1stwvFmlaNx=z𝑔v
48 30 47 sylbid NωwSatNx=z𝑔1stwvFmlaNx=z𝑔v
49 48 rexlimdv NωwSatNx=z𝑔1stwvFmlaNx=z𝑔v
50 49 adantr Nωy=zzSatNwSatNx=z𝑔1stwvFmlaNx=z𝑔v
51 15 oveq1d y=z1sty𝑔1stw=z𝑔1stw
52 51 eqeq2d y=zx=1sty𝑔1stwx=z𝑔1stw
53 52 rexbidv y=zwSatNx=1sty𝑔1stwwSatNx=z𝑔1stw
54 15 oveq1d y=z1sty𝑔v=z𝑔v
55 54 eqeq2d y=zx=1sty𝑔vx=z𝑔v
56 55 rexbidv y=zvFmlaNx=1sty𝑔vvFmlaNx=z𝑔v
57 53 56 imbi12d y=zwSatNx=1sty𝑔1stwvFmlaNx=1sty𝑔vwSatNx=z𝑔1stwvFmlaNx=z𝑔v
58 57 ad2antrl Nωy=zzSatNwSatNx=1sty𝑔1stwvFmlaNx=1sty𝑔vwSatNx=z𝑔1stwvFmlaNx=z𝑔v
59 50 58 mpbird Nωy=zzSatNwSatNx=1sty𝑔1stwvFmlaNx=1sty𝑔v
60 59 orim1d Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styvFmlaNx=1sty𝑔viωx=𝑔i1sty
61 60 3impia Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styvFmlaNx=1sty𝑔viωx=𝑔i1sty
62 19 29 61 rspcedvd Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
63 62 3exp Nωy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
64 63 exlimdv Nωzy=zzSatNwSatNx=1sty𝑔1stwiωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
65 8 64 syl7bi Nωzy=zzSatNzSatNx=1sty𝑔1stziωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
66 3 65 sylbid NωySatNzSatNx=1sty𝑔1stziωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
67 66 rexlimdv NωySatNzSatNx=1sty𝑔1stziωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
68 fmlafvel NωuFmlaNuSatN
69 68 biimpa NωuFmlaNuSatN
70 69 adantr NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuuSatN
71 vex uV
72 71 14 op1std y=u1sty=u
73 72 oveq1d y=u1sty𝑔1stz=u𝑔1stz
74 73 eqeq2d y=ux=1sty𝑔1stzx=u𝑔1stz
75 74 rexbidv y=uzSatNx=1sty𝑔1stzzSatNx=u𝑔1stz
76 eqidd y=ui=i
77 76 72 goaleq12d y=u𝑔i1sty=𝑔iu
78 77 eqeq2d y=ux=𝑔i1styx=𝑔iu
79 78 rexbidv y=uiωx=𝑔i1styiωx=𝑔iu
80 75 79 orbi12d y=uzSatNx=1sty𝑔1stziωx=𝑔i1styzSatNx=u𝑔1stziωx=𝑔iu
81 80 adantl NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuy=uzSatNx=1sty𝑔1stziωx=𝑔i1styzSatNx=u𝑔1stziωx=𝑔iu
82 fmlafvel NωvFmlaNvSatN
83 82 biimpd NωvFmlaNvSatN
84 83 adantr NωuFmlaNvFmlaNvSatN
85 84 imp NωuFmlaNvFmlaNvSatN
86 85 adantr NωuFmlaNvFmlaNx=u𝑔vvSatN
87 vex vV
88 87 14 op1std z=v1stz=v
89 88 oveq2d z=vu𝑔1stz=u𝑔v
90 89 eqeq2d z=vx=u𝑔1stzx=u𝑔v
91 90 adantl NωuFmlaNvFmlaNx=u𝑔vz=vx=u𝑔1stzx=u𝑔v
92 simpr NωuFmlaNvFmlaNx=u𝑔vx=u𝑔v
93 86 91 92 rspcedvd NωuFmlaNvFmlaNx=u𝑔vzSatNx=u𝑔1stz
94 93 rexlimdva2 NωuFmlaNvFmlaNx=u𝑔vzSatNx=u𝑔1stz
95 94 orim1d NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuzSatNx=u𝑔1stziωx=𝑔iu
96 95 imp NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuzSatNx=u𝑔1stziωx=𝑔iu
97 70 81 96 rspcedvd NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuySatNzSatNx=1sty𝑔1stziωx=𝑔i1sty
98 97 rexlimdva2 NωuFmlaNvFmlaNx=u𝑔viωx=𝑔iuySatNzSatNx=1sty𝑔1stziωx=𝑔i1sty
99 67 98 impbid NωySatNzSatNx=1sty𝑔1stziωx=𝑔i1styuFmlaNvFmlaNx=u𝑔viωx=𝑔iu
100 99 abbidv Nωx|ySatNzSatNx=1sty𝑔1stziωx=𝑔i1sty=x|uFmlaNvFmlaNx=u𝑔viωx=𝑔iu
101 100 uneq2d NωFmlaNx|ySatNzSatNx=1sty𝑔1stziωx=𝑔i1sty=FmlaNx|uFmlaNvFmlaNx=u𝑔viωx=𝑔iu
102 1 101 eqtrd NωFmlasucN=FmlaNx|uFmlaNvFmlaNx=u𝑔viωx=𝑔iu