Metamath Proof Explorer


Theorem fnlimabslt

Description: A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimabslt.p m φ
fnlimabslt.f _ m F
fnlimabslt.n _ x F
fnlimabslt.m φ M
fnlimabslt.z Z = M
fnlimabslt.b φ m Z F m : dom F m
fnlimabslt.d D = x n Z m n dom F m | m Z F m x dom
fnlimabslt.g G = x D m Z F m x
fnlimabslt.x φ X D
fnlimabslt.y φ Y +
Assertion fnlimabslt φ n Z m n F m X F m X G X < Y

Proof

Step Hyp Ref Expression
1 fnlimabslt.p m φ
2 fnlimabslt.f _ m F
3 fnlimabslt.n _ x F
4 fnlimabslt.m φ M
5 fnlimabslt.z Z = M
6 fnlimabslt.b φ m Z F m : dom F m
7 fnlimabslt.d D = x n Z m n dom F m | m Z F m x dom
8 fnlimabslt.g G = x D m Z F m x
9 fnlimabslt.x φ X D
10 fnlimabslt.y φ Y +
11 eqid n Z m n dom F m = n Z m n dom F m
12 nfcv _ x Z
13 nfcv _ x n
14 nfcv _ x m
15 3 14 nffv _ x F m
16 15 nfdm _ x dom F m
17 13 16 nfiin _ x m n dom F m
18 12 17 nfiun _ x n Z m n dom F m
19 nfcv _ y n Z m n dom F m
20 nfv y m Z F m x dom
21 nfcv _ x y
22 15 21 nffv _ x F m y
23 12 22 nfmpt _ x m Z F m y
24 nfcv _ x dom
25 23 24 nfel x m Z F m y dom
26 fveq2 x = y F m x = F m y
27 26 mpteq2dv x = y m Z F m x = m Z F m y
28 27 eleq1d x = y m Z F m x dom m Z F m y dom
29 18 19 20 25 28 cbvrabw x n Z m n dom F m | m Z F m x dom = y n Z m n dom F m | m Z F m y dom
30 ssrab2 y n Z m n dom F m | m Z F m y dom n Z m n dom F m
31 29 30 eqsstri x n Z m n dom F m | m Z F m x dom n Z m n dom F m
32 7 31 eqsstri D n Z m n dom F m
33 32 9 sseldi φ X n Z m n dom F m
34 1 5 6 11 33 allbutfifvre φ n Z m n F m X
35 nfv j φ
36 nfcv _ j m Z F m X
37 3 7 8 9 fnlimcnv φ m Z F m X G X
38 nfcv _ l F m X
39 nfcv _ m l
40 2 39 nffv _ m F l
41 nfcv _ m X
42 40 41 nffv _ m F l X
43 fveq2 m = l F m = F l
44 43 fveq1d m = l F m X = F l X
45 38 42 44 cbvmpt m Z F m X = l Z F l X
46 fveq2 l = j F l = F j
47 46 fveq1d l = j F l X = F j X
48 simpr φ j Z j Z
49 fvexd φ j Z F j X V
50 45 47 48 49 fvmptd3 φ j Z m Z F m X j = F j X
51 35 36 5 4 37 50 10 climd φ n Z j n F j X F j X G X < Y
52 nfv j F m X F m X G X < Y
53 nfcv _ m j
54 2 53 nffv _ m F j
55 54 41 nffv _ m F j X
56 nfcv _ m
57 55 56 nfel m F j X
58 nfcv _ m abs
59 nfcv _ m
60 nfmpt1 _ m m Z F m x
61 nfcv _ m dom
62 60 61 nfel m m Z F m x dom
63 nfcv _ m Z
64 nfii1 _ m m n dom F m
65 63 64 nfiun _ m n Z m n dom F m
66 62 65 nfrabw _ m x n Z m n dom F m | m Z F m x dom
67 7 66 nfcxfr _ m D
68 nfcv _ m
69 68 60 nffv _ m m Z F m x
70 67 69 nfmpt _ m x D m Z F m x
71 8 70 nfcxfr _ m G
72 71 41 nffv _ m G X
73 55 59 72 nfov _ m F j X G X
74 58 73 nffv _ m F j X G X
75 nfcv _ m <
76 nfcv _ m Y
77 74 75 76 nfbr m F j X G X < Y
78 57 77 nfan m F j X F j X G X < Y
79 fveq2 m = j F m = F j
80 79 fveq1d m = j F m X = F j X
81 80 eleq1d m = j F m X F j X
82 80 fvoveq1d m = j F m X G X = F j X G X
83 82 breq1d m = j F m X G X < Y F j X G X < Y
84 81 83 anbi12d m = j F m X F m X G X < Y F j X F j X G X < Y
85 52 78 84 cbvralw m n F m X F m X G X < Y j n F j X F j X G X < Y
86 85 rexbii n Z m n F m X F m X G X < Y n Z j n F j X F j X G X < Y
87 51 86 sylibr φ n Z m n F m X F m X G X < Y
88 nfv m n Z
89 1 88 nfan m φ n Z
90 simpr F m X F m X G X < Y F m X G X < Y
91 90 a1i φ n Z m n F m X F m X G X < Y F m X G X < Y
92 89 91 ralimdaa φ n Z m n F m X F m X G X < Y m n F m X G X < Y
93 92 reximdva φ n Z m n F m X F m X G X < Y n Z m n F m X G X < Y
94 87 93 mpd φ n Z m n F m X G X < Y
95 34 94 jca φ n Z m n F m X n Z m n F m X G X < Y
96 5 rexanuz2 n Z m n F m X F m X G X < Y n Z m n F m X n Z m n F m X G X < Y
97 95 96 sylibr φ n Z m n F m X F m X G X < Y