Metamath Proof Explorer


Theorem fprodaddrecnncnvlem

Description: The sequence S of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodaddrecnncnvlem.k kφ
fprodaddrecnncnvlem.a φAFin
fprodaddrecnncnvlem.b φkAB
fprodaddrecnncnvlem.s S=nkAB+1n
fprodaddrecnncnvlem.f F=xkAB+x
fprodaddrecnncnvlem.g G=n1n
Assertion fprodaddrecnncnvlem φSkAB

Proof

Step Hyp Ref Expression
1 fprodaddrecnncnvlem.k kφ
2 fprodaddrecnncnvlem.a φAFin
3 fprodaddrecnncnvlem.b φkAB
4 fprodaddrecnncnvlem.s S=nkAB+1n
5 fprodaddrecnncnvlem.f F=xkAB+x
6 fprodaddrecnncnvlem.g G=n1n
7 nnuz =1
8 1zzd φ1
9 1 2 3 5 fprodadd2cncf φF:cn
10 1rp 1+
11 10 a1i n1+
12 nnrp nn+
13 11 12 rpdivcld n1n+
14 13 rpcnd n1n
15 14 adantl φn1n
16 15 6 fmptd φG:
17 1cnd φ1
18 divcnv 1n1n0
19 17 18 syl φn1n0
20 6 a1i φG=n1n
21 20 breq1d φG0n1n0
22 19 21 mpbird φG0
23 0cnd φ0
24 7 8 9 16 22 23 climcncf φFGF0
25 nfv kx
26 1 25 nfan kφx
27 2 adantr φxAFin
28 3 adantlr φxkAB
29 simplr φxkAx
30 28 29 addcld φxkAB+x
31 26 27 30 fprodclf φxkAB+x
32 31 5 fmptd φF:
33 fcompt F:G:FG=nFGn
34 32 16 33 syl2anc φFG=nFGn
35 4 a1i φS=nkAB+1n
36 id nn
37 6 fvmpt2 n1nGn=1n
38 36 14 37 syl2anc nGn=1n
39 38 fveq2d nFGn=F1n
40 39 adantl φnFGn=F1n
41 oveq2 x=1nB+x=B+1n
42 41 prodeq2ad x=1nkAB+x=kAB+1n
43 prodex kAB+1nV
44 43 a1i φnkAB+1nV
45 5 42 15 44 fvmptd3 φnF1n=kAB+1n
46 40 45 eqtr2d φnkAB+1n=FGn
47 46 mpteq2dva φnkAB+1n=nFGn
48 35 47 eqtrd φS=nFGn
49 34 48 eqtr4d φFG=S
50 5 a1i φF=xkAB+x
51 nfv kx=0
52 1 51 nfan kφx=0
53 oveq2 x=0B+x=B+0
54 53 ad2antlr φx=0kAB+x=B+0
55 3 addridd φkAB+0=B
56 55 adantlr φx=0kAB+0=B
57 54 56 eqtrd φx=0kAB+x=B
58 57 ex φx=0kAB+x=B
59 52 58 ralrimi φx=0kAB+x=B
60 59 prodeq2d φx=0kAB+x=kAB
61 prodex kABV
62 61 a1i φkABV
63 50 60 23 62 fvmptd φF0=kAB
64 49 63 breq12d φFGF0SkAB
65 24 64 mpbid φSkAB