Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fproddiv
Next ⟩
prodsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
fproddiv
Description:
The quotient of two finite products.
(Contributed by
Scott Fenton
, 15-Jan-2018)
Ref
Expression
Hypotheses
fprodmul.1
⊢
φ
→
A
∈
Fin
fprodmul.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
fprodmul.3
⊢
φ
∧
k
∈
A
→
C
∈
ℂ
fproddiv.4
⊢
φ
∧
k
∈
A
→
C
≠
0
Assertion
fproddiv
⊢
φ
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
fprodmul.1
⊢
φ
→
A
∈
Fin
2
fprodmul.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
3
fprodmul.3
⊢
φ
∧
k
∈
A
→
C
∈
ℂ
4
fproddiv.4
⊢
φ
∧
k
∈
A
→
C
≠
0
5
1div1e1
⊢
1
1
=
1
6
5
eqcomi
⊢
1
=
1
1
7
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
∅
B
C
8
prod0
⊢
∏
k
∈
∅
B
C
=
1
9
7
8
eqtrdi
⊢
A
=
∅
→
∏
k
∈
A
B
C
=
1
10
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
B
=
∏
k
∈
∅
B
11
prod0
⊢
∏
k
∈
∅
B
=
1
12
10
11
eqtrdi
⊢
A
=
∅
→
∏
k
∈
A
B
=
1
13
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
C
=
∏
k
∈
∅
C
14
prod0
⊢
∏
k
∈
∅
C
=
1
15
13
14
eqtrdi
⊢
A
=
∅
→
∏
k
∈
A
C
=
1
16
12
15
oveq12d
⊢
A
=
∅
→
∏
k
∈
A
B
∏
k
∈
A
C
=
1
1
17
6
9
16
3eqtr4a
⊢
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
18
17
a1i
⊢
φ
→
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
19
simprl
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
A
∈
ℕ
20
nnuz
⊢
ℕ
=
ℤ
≥
1
21
19
20
eleqtrdi
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
A
∈
ℤ
≥
1
22
2
fmpttd
⊢
φ
→
k
∈
A
⟼
B
:
A
⟶
ℂ
23
f1of
⊢
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
A
24
23
adantl
⊢
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
A
25
fco
⊢
k
∈
A
⟼
B
:
A
⟶
ℂ
∧
f
:
1
…
A
⟶
A
→
k
∈
A
⟼
B
∘
f
:
1
…
A
⟶
ℂ
26
22
24
25
syl2an
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
∘
f
:
1
…
A
⟶
ℂ
27
26
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
∈
ℂ
28
3
fmpttd
⊢
φ
→
k
∈
A
⟼
C
:
A
⟶
ℂ
29
fco
⊢
k
∈
A
⟼
C
:
A
⟶
ℂ
∧
f
:
1
…
A
⟶
A
→
k
∈
A
⟼
C
∘
f
:
1
…
A
⟶
ℂ
30
28
24
29
syl2an
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
C
∘
f
:
1
…
A
⟶
ℂ
31
30
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
∈
ℂ
32
simprr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
1-1 onto
A
33
32
23
syl
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
A
34
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
C
f
n
35
33
34
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
C
f
n
36
33
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
f
n
∈
A
37
simpr
⊢
φ
∧
k
∈
A
→
k
∈
A
38
eqid
⊢
k
∈
A
⟼
C
=
k
∈
A
⟼
C
39
38
fvmpt2
⊢
k
∈
A
∧
C
∈
ℂ
→
k
∈
A
⟼
C
k
=
C
40
37
3
39
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
C
k
=
C
41
40
4
eqnetrd
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
C
k
≠
0
42
41
ralrimiva
⊢
φ
→
∀
k
∈
A
k
∈
A
⟼
C
k
≠
0
43
42
ad2antrr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
∀
k
∈
A
k
∈
A
⟼
C
k
≠
0
44
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
C
f
n
45
nfcv
⊢
Ⅎ
_
k
0
46
44
45
nfne
⊢
Ⅎ
k
k
∈
A
⟼
C
f
n
≠
0
47
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
C
k
=
k
∈
A
⟼
C
f
n
48
47
neeq1d
⊢
k
=
f
n
→
k
∈
A
⟼
C
k
≠
0
↔
k
∈
A
⟼
C
f
n
≠
0
49
46
48
rspc
⊢
f
n
∈
A
→
∀
k
∈
A
k
∈
A
⟼
C
k
≠
0
→
k
∈
A
⟼
C
f
n
≠
0
50
36
43
49
sylc
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
f
n
≠
0
51
35
50
eqnetrd
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
≠
0
52
2
3
4
divcld
⊢
φ
∧
k
∈
A
→
B
C
∈
ℂ
53
eqid
⊢
k
∈
A
⟼
B
C
=
k
∈
A
⟼
B
C
54
53
fvmpt2
⊢
k
∈
A
∧
B
C
∈
ℂ
→
k
∈
A
⟼
B
C
k
=
B
C
55
37
52
54
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
C
k
=
B
C
56
eqid
⊢
k
∈
A
⟼
B
=
k
∈
A
⟼
B
57
56
fvmpt2
⊢
k
∈
A
∧
B
∈
ℂ
→
k
∈
A
⟼
B
k
=
B
58
37
2
57
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
k
=
B
59
58
40
oveq12d
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
=
B
C
60
55
59
eqtr4d
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
61
60
ralrimiva
⊢
φ
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
62
61
ad2antrr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
63
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
B
C
f
n
64
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
B
f
n
65
nfcv
⊢
Ⅎ
_
k
÷
66
64
65
44
nfov
⊢
Ⅎ
_
k
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
67
63
66
nfeq
⊢
Ⅎ
k
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
68
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
C
f
n
69
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
B
k
=
k
∈
A
⟼
B
f
n
70
69
47
oveq12d
⊢
k
=
f
n
→
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
71
68
70
eqeq12d
⊢
k
=
f
n
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
↔
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
72
67
71
rspc
⊢
f
n
∈
A
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
→
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
73
36
62
72
sylc
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
74
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
C
f
n
75
33
74
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
C
f
n
76
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
=
k
∈
A
⟼
B
f
n
77
33
76
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
=
k
∈
A
⟼
B
f
n
78
77
35
oveq12d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
79
73
75
78
3eqtr4d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
∘
f
n
k
∈
A
⟼
C
∘
f
n
80
21
27
31
51
79
prodfdiv
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
seq
1
×
k
∈
A
⟼
B
C
∘
f
A
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
seq
1
×
k
∈
A
⟼
C
∘
f
A
81
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
B
C
m
=
k
∈
A
⟼
B
C
f
n
82
52
fmpttd
⊢
φ
→
k
∈
A
⟼
B
C
:
A
⟶
ℂ
83
82
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
C
:
A
⟶
ℂ
84
83
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
B
C
m
∈
ℂ
85
81
19
32
84
75
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
seq
1
×
k
∈
A
⟼
B
C
∘
f
A
86
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
B
m
=
k
∈
A
⟼
B
f
n
87
22
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
:
A
⟶
ℂ
88
87
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
B
m
∈
ℂ
89
86
19
32
88
77
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
m
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
90
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
C
m
=
k
∈
A
⟼
C
f
n
91
28
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
C
:
A
⟶
ℂ
92
91
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
C
m
∈
ℂ
93
90
19
32
92
35
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
C
m
=
seq
1
×
k
∈
A
⟼
C
∘
f
A
94
89
93
oveq12d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
seq
1
×
k
∈
A
⟼
C
∘
f
A
95
80
85
94
3eqtr4d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
96
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
∏
k
∈
A
B
C
97
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
B
m
=
∏
k
∈
A
B
98
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
C
m
=
∏
k
∈
A
C
99
97
98
oveq12i
⊢
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
=
∏
k
∈
A
B
∏
k
∈
A
C
100
95
96
99
3eqtr3g
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
101
100
expr
⊢
φ
∧
A
∈
ℕ
→
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
102
101
exlimdv
⊢
φ
∧
A
∈
ℕ
→
∃
f
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
103
102
expimpd
⊢
φ
→
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
104
fz1f1o
⊢
A
∈
Fin
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
105
1
104
syl
⊢
φ
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
106
18
103
105
mpjaod
⊢
φ
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C