Metamath Proof Explorer


Theorem fprodeq0

Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017)

Ref Expression
Hypotheses fprodeq0.1 Z=M
fprodeq0.2 φNZ
fprodeq0.3 φkZA
fprodeq0.4 φk=NA=0
Assertion fprodeq0 φKNk=MKA=0

Proof

Step Hyp Ref Expression
1 fprodeq0.1 Z=M
2 fprodeq0.2 φNZ
3 fprodeq0.3 φkZA
4 fprodeq0.4 φk=NA=0
5 eluzel2 KNN
6 5 adantl φKNN
7 6 zred φKNN
8 7 ltp1d φKNN<N+1
9 fzdisj N<N+1MNN+1K=
10 8 9 syl φKNMNN+1K=
11 eluzel2 NMM
12 11 1 eleq2s NZM
13 2 12 syl φM
14 13 adantr φKNM
15 eluzelz KNK
16 15 adantl φKNK
17 14 16 6 3jca φKNMKN
18 eluzle NMMN
19 18 1 eleq2s NZMN
20 2 19 syl φMN
21 eluzle KNNK
22 20 21 anim12i φKNMNNK
23 elfz2 NMKMKNMNNK
24 17 22 23 sylanbrc φKNNMK
25 fzsplit NMKMK=MNN+1K
26 24 25 syl φKNMK=MNN+1K
27 fzfid φKNMKFin
28 elfzuz kMKkM
29 28 1 eleqtrrdi kMKkZ
30 29 3 sylan2 φkMKA
31 30 adantlr φKNkMKA
32 10 26 27 31 fprodsplit φKNk=MKA=k=MNAk=N+1KA
33 2 1 eleqtrdi φNM
34 elfzuz kMNkM
35 34 1 eleqtrrdi kMNkZ
36 35 3 sylan2 φkMNA
37 33 36 fprodm1s φk=MNA=k=MN1AN/kA
38 2 4 csbied φN/kA=0
39 38 oveq2d φk=MN1AN/kA=k=MN1A0
40 fzfid φMN1Fin
41 elfzuz kMN1kM
42 41 1 eleqtrrdi kMN1kZ
43 42 3 sylan2 φkMN1A
44 40 43 fprodcl φk=MN1A
45 44 mul01d φk=MN1A0=0
46 37 39 45 3eqtrd φk=MNA=0
47 46 adantr φKNk=MNA=0
48 47 oveq1d φKNk=MNAk=N+1KA=0k=N+1KA
49 fzfid φKNN+1KFin
50 1 peano2uzs NZN+1Z
51 2 50 syl φN+1Z
52 elfzuz kN+1KkN+1
53 1 uztrn2 N+1ZkN+1kZ
54 51 52 53 syl2an φkN+1KkZ
55 54 adantrl φKNkN+1KkZ
56 55 3 syldan φKNkN+1KA
57 56 anassrs φKNkN+1KA
58 49 57 fprodcl φKNk=N+1KA
59 58 mul02d φKN0k=N+1KA=0
60 32 48 59 3eqtrd φKNk=MKA=0