Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodeq0.1 | |
|
fprodeq0.2 | |
||
fprodeq0.3 | |
||
fprodeq0.4 | |
||
Assertion | fprodeq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodeq0.1 | |
|
2 | fprodeq0.2 | |
|
3 | fprodeq0.3 | |
|
4 | fprodeq0.4 | |
|
5 | eluzel2 | |
|
6 | 5 | adantl | |
7 | 6 | zred | |
8 | 7 | ltp1d | |
9 | fzdisj | |
|
10 | 8 9 | syl | |
11 | eluzel2 | |
|
12 | 11 1 | eleq2s | |
13 | 2 12 | syl | |
14 | 13 | adantr | |
15 | eluzelz | |
|
16 | 15 | adantl | |
17 | 14 16 6 | 3jca | |
18 | eluzle | |
|
19 | 18 1 | eleq2s | |
20 | 2 19 | syl | |
21 | eluzle | |
|
22 | 20 21 | anim12i | |
23 | elfz2 | |
|
24 | 17 22 23 | sylanbrc | |
25 | fzsplit | |
|
26 | 24 25 | syl | |
27 | fzfid | |
|
28 | elfzuz | |
|
29 | 28 1 | eleqtrrdi | |
30 | 29 3 | sylan2 | |
31 | 30 | adantlr | |
32 | 10 26 27 31 | fprodsplit | |
33 | 2 1 | eleqtrdi | |
34 | elfzuz | |
|
35 | 34 1 | eleqtrrdi | |
36 | 35 3 | sylan2 | |
37 | 33 36 | fprodm1s | |
38 | 2 4 | csbied | |
39 | 38 | oveq2d | |
40 | fzfid | |
|
41 | elfzuz | |
|
42 | 41 1 | eleqtrrdi | |
43 | 42 3 | sylan2 | |
44 | 40 43 | fprodcl | |
45 | 44 | mul01d | |
46 | 37 39 45 | 3eqtrd | |
47 | 46 | adantr | |
48 | 47 | oveq1d | |
49 | fzfid | |
|
50 | 1 | peano2uzs | |
51 | 2 50 | syl | |
52 | elfzuz | |
|
53 | 1 | uztrn2 | |
54 | 51 52 53 | syl2an | |
55 | 54 | adantrl | |
56 | 55 3 | syldan | |
57 | 56 | anassrs | |
58 | 49 57 | fprodcl | |
59 | 58 | mul02d | |
60 | 32 48 59 | 3eqtrd | |