Description: The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fprfung.1 | |
|
Assertion | fprresex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprfung.1 | |
|
2 | 1 | fprfung | |
3 | funfvop | |
|
4 | 2 3 | sylan | |
5 | df-frecs | |
|
6 | 1 5 | eqtri | |
7 | 6 | eleq2i | |
8 | eluni | |
|
9 | 7 8 | bitri | |
10 | 4 9 | sylib | |
11 | eqid | |
|
12 | 11 | frrlem1 | |
13 | 12 | eqabri | |
14 | 13 | biimpi | |
15 | 14 | adantl | |
16 | 15 | adantl | |
17 | 3simpa | |
|
18 | 2 | ad2antrr | |
19 | simprlr | |
|
20 | elssuni | |
|
21 | 19 20 | syl | |
22 | 21 6 | sseqtrrdi | |
23 | predeq3 | |
|
24 | 23 | sseq1d | |
25 | simprrr | |
|
26 | 25 | adantl | |
27 | simplr | |
|
28 | simprll | |
|
29 | df-br | |
|
30 | 28 29 | sylibr | |
31 | fvex | |
|
32 | breldmg | |
|
33 | 31 32 | mp3an2 | |
34 | 27 30 33 | syl2anc | |
35 | simprrl | |
|
36 | 35 | fndmd | |
37 | 34 36 | eleqtrd | |
38 | 24 26 37 | rspcdva | |
39 | 38 36 | sseqtrrd | |
40 | fun2ssres | |
|
41 | 18 22 39 40 | syl3anc | |
42 | vex | |
|
43 | 42 | resex | |
44 | 41 43 | eqeltrdi | |
45 | 44 | expr | |
46 | 17 45 | syl5 | |
47 | 46 | exlimdv | |
48 | 16 47 | mpd | |
49 | 10 48 | exlimddv | |