Metamath Proof Explorer


Theorem fprresex

Description: The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fprfung.1 F=frecsRAG
Assertion fprresex RFrARPoARSeAXdomFFPredRAXV

Proof

Step Hyp Ref Expression
1 fprfung.1 F=frecsRAG
2 1 fprfung RFrARPoARSeAFunF
3 funfvop FunFXdomFXFXF
4 2 3 sylan RFrARPoARSeAXdomFXFXF
5 df-frecs frecsRAG=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
6 1 5 eqtri F=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
7 6 eleq2i XFXFXFXf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
8 eluni XFXf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
9 7 8 bitri XFXFgXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
10 4 9 sylib RFrARPoARSeAXdomFgXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
11 eqid f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
12 11 frrlem1 f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy=g|zgFnzzAwzPredRAwzwzgw=wGgPredRAw
13 12 eqabri gf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyzgFnzzAwzPredRAwzwzgw=wGgPredRAw
14 13 biimpi gf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyzgFnzzAwzPredRAwzwzgw=wGgPredRAw
15 14 adantl XFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyzgFnzzAwzPredRAwzwzgw=wGgPredRAw
16 15 adantl RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyzgFnzzAwzPredRAwzwzgw=wGgPredRAw
17 3simpa gFnzzAwzPredRAwzwzgw=wGgPredRAwgFnzzAwzPredRAwz
18 2 ad2antrr RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzFunF
19 simprlr RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzgf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
20 elssuni gf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
21 19 20 syl RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzgf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
22 21 6 sseqtrrdi RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzgF
23 predeq3 w=XPredRAw=PredRAX
24 23 sseq1d w=XPredRAwzPredRAXz
25 simprrr XFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzwzPredRAwz
26 25 adantl RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzwzPredRAwz
27 simplr RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzXdomF
28 simprll RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzXFXg
29 df-br XgFXXFXg
30 28 29 sylibr RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzXgFX
31 fvex FXV
32 breldmg XdomFFXVXgFXXdomg
33 31 32 mp3an2 XdomFXgFXXdomg
34 27 30 33 syl2anc RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzXdomg
35 simprrl RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzgFnz
36 35 fndmd RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzdomg=z
37 34 36 eleqtrd RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzXz
38 24 26 37 rspcdva RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzPredRAXz
39 38 36 sseqtrrd RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzPredRAXdomg
40 fun2ssres FunFgFPredRAXdomgFPredRAX=gPredRAX
41 18 22 39 40 syl3anc RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzFPredRAX=gPredRAX
42 vex gV
43 42 resex gPredRAXV
44 41 43 eqeltrdi RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzFPredRAXV
45 44 expr RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzFPredRAXV
46 17 45 syl5 RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAygFnzzAwzPredRAwzwzgw=wGgPredRAwFPredRAXV
47 46 exlimdv RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyzgFnzzAwzPredRAwzwzgw=wGgPredRAwFPredRAXV
48 16 47 mpd RFrARPoARSeAXdomFXFXggf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyFPredRAXV
49 10 48 exlimddv RFrARPoARSeAXdomFFPredRAXV