Metamath Proof Explorer


Theorem frgrregord013

Description: If a finite friendship graph is K-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V=VtxG
Assertion frgrregord013 GFriendGraphVFinGRegUSGraphKV=0V=1V=3

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V=VtxG
2 hashcl VFinV0
3 ax-1 V=0V=1V=3V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
4 3ioran ¬V=0V=1V=3¬V=0¬V=1¬V=3
5 df-ne V0¬V=0
6 hasheq0 VFinV=0V=
7 6 necon3bid VFinV0V
8 7 biimpa VFinV0V
9 elnnne0 VV0V0
10 df-ne V1¬V=1
11 eluz2b3 V2VV1
12 hash2prde VFinV=2ababV=ab
13 vex aV
14 13 a1i abaV
15 vex bV
16 15 a1i abbV
17 id abab
18 14 16 17 3jca abaVbVab
19 1 eqeq1i V=abVtxG=ab
20 19 biimpi V=abVtxG=ab
21 nfrgr2v aVbVabVtxG=abGFriendGraph
22 18 20 21 syl2an abV=abGFriendGraph
23 df-nel GFriendGraph¬GFriendGraph
24 22 23 sylib abV=ab¬GFriendGraph
25 24 pm2.21d abV=abGFriendGraphV¬V=3GRegUSGraphKV=0V=1V=3
26 25 com23 abV=abVGFriendGraph¬V=3GRegUSGraphKV=0V=1V=3
27 26 exlimivv ababV=abVGFriendGraph¬V=3GRegUSGraphKV=0V=1V=3
28 12 27 syl VFinV=2VGFriendGraph¬V=3GRegUSGraphKV=0V=1V=3
29 28 ex VFinV=2VGFriendGraph¬V=3GRegUSGraphKV=0V=1V=3
30 29 com23 VFinVV=2GFriendGraph¬V=3GRegUSGraphKV=0V=1V=3
31 30 com14 GFriendGraphVV=2VFin¬V=3GRegUSGraphKV=0V=1V=3
32 31 a1i V2GFriendGraphVV=2VFin¬V=3GRegUSGraphKV=0V=1V=3
33 32 3imp V2GFriendGraphVV=2VFin¬V=3GRegUSGraphKV=0V=1V=3
34 33 com12 V=2V2GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
35 eqid VtxDegG=VtxDegG
36 1 35 rusgrprop0 GRegUSGraphKGUSGraphK0*vVVtxDegGv=K
37 eluz2gt1 V21<V
38 37 anim1ci V2GFriendGraphGFriendGraph1<V
39 1 vdgn0frgrv2 GFriendGraphvV1<VVtxDegGv0
40 39 impancom GFriendGraph1<VvVVtxDegGv0
41 40 ralrimiv GFriendGraph1<VvVVtxDegGv0
42 eqeq2 K=0VtxDegGv=KVtxDegGv=0
43 42 ralbidv K=0vVVtxDegGv=KvVVtxDegGv=0
44 r19.26 vVVtxDegGv=0VtxDegGv0vVVtxDegGv=0vVVtxDegGv0
45 nne ¬VtxDegGv0VtxDegGv=0
46 45 bicomi VtxDegGv=0¬VtxDegGv0
47 46 anbi1i VtxDegGv=0VtxDegGv0¬VtxDegGv0VtxDegGv0
48 ancom ¬VtxDegGv0VtxDegGv0VtxDegGv0¬VtxDegGv0
49 pm3.24 ¬VtxDegGv0¬VtxDegGv0
50 49 bifal VtxDegGv0¬VtxDegGv0
51 47 48 50 3bitri VtxDegGv=0VtxDegGv0
52 51 ralbii vVVtxDegGv=0VtxDegGv0vV
53 r19.3rzv VvV
54 falim V=0V=1V=3
55 53 54 syl6bir VvVV=0V=1V=3
56 55 adantl VFinVvVV=0V=1V=3
57 56 com12 vVVFinVV=0V=1V=3
58 52 57 sylbi vVVtxDegGv=0VtxDegGv0VFinVV=0V=1V=3
59 44 58 sylbir vVVtxDegGv=0vVVtxDegGv0VFinVV=0V=1V=3
60 59 ex vVVtxDegGv=0vVVtxDegGv0VFinVV=0V=1V=3
61 43 60 syl6bi K=0vVVtxDegGv=KvVVtxDegGv0VFinVV=0V=1V=3
62 61 com4t vVVtxDegGv0VFinVK=0vVVtxDegGv=KV=0V=1V=3
63 38 41 62 3syl V2GFriendGraphVFinVK=0vVVtxDegGv=KV=0V=1V=3
64 63 ex V2GFriendGraphVFinVK=0vVVtxDegGv=KV=0V=1V=3
65 64 com25 V2vVVtxDegGv=KVFinVK=0GFriendGraphV=0V=1V=3
66 65 adantl ¬V=3¬V=2V2vVVtxDegGv=KVFinVK=0GFriendGraphV=0V=1V=3
67 66 com15 GFriendGraphvVVtxDegGv=KVFinVK=0¬V=3¬V=2V2V=0V=1V=3
68 67 com12 vVVtxDegGv=KGFriendGraphVFinVK=0¬V=3¬V=2V2V=0V=1V=3
69 68 3ad2ant3 GUSGraphK0*vVVtxDegGv=KGFriendGraphVFinVK=0¬V=3¬V=2V2V=0V=1V=3
70 36 69 syl GRegUSGraphKGFriendGraphVFinVK=0¬V=3¬V=2V2V=0V=1V=3
71 70 impcom GFriendGraphGRegUSGraphKVFinVK=0¬V=3¬V=2V2V=0V=1V=3
72 71 impcom VFinVGFriendGraphGRegUSGraphKK=0¬V=3¬V=2V2V=0V=1V=3
73 1 frrusgrord VFinVGFriendGraphGRegUSGraphKV=KK1+1
74 73 imp VFinVGFriendGraphGRegUSGraphKV=KK1+1
75 id K=2K=2
76 oveq1 K=2K1=21
77 75 76 oveq12d K=2KK1=221
78 77 oveq1d K=2KK1+1=221+1
79 2m1e1 21=1
80 79 oveq2i 221=21
81 2t1e2 21=2
82 80 81 eqtri 221=2
83 82 oveq1i 221+1=2+1
84 2p1e3 2+1=3
85 83 84 eqtri 221+1=3
86 78 85 eqtrdi K=2KK1+1=3
87 86 eqeq2d K=2V=KK1+1V=3
88 pm2.21 ¬V=3V=3V=0V=1V=3
89 88 ad2antrr ¬V=3¬V=2V2V=3V=0V=1V=3
90 89 com12 V=3¬V=3¬V=2V2V=0V=1V=3
91 87 90 syl6bi K=2V=KK1+1¬V=3¬V=2V2V=0V=1V=3
92 74 91 syl5com VFinVGFriendGraphGRegUSGraphKK=2¬V=3¬V=2V2V=0V=1V=3
93 1 frgrreg VFinVGFriendGraphGRegUSGraphKK=0K=2
94 93 imp VFinVGFriendGraphGRegUSGraphKK=0K=2
95 72 92 94 mpjaod VFinVGFriendGraphGRegUSGraphK¬V=3¬V=2V2V=0V=1V=3
96 95 exp32 VFinVGFriendGraphGRegUSGraphK¬V=3¬V=2V2V=0V=1V=3
97 96 com34 VFinVGFriendGraph¬V=3¬V=2V2GRegUSGraphKV=0V=1V=3
98 97 com23 VFinV¬V=3¬V=2V2GFriendGraphGRegUSGraphKV=0V=1V=3
99 98 exp4c VFinV¬V=3¬V=2V2GFriendGraphGRegUSGraphKV=0V=1V=3
100 99 com34 VFinV¬V=3V2¬V=2GFriendGraphGRegUSGraphKV=0V=1V=3
101 100 com25 VFinVGFriendGraphV2¬V=2¬V=3GRegUSGraphKV=0V=1V=3
102 101 ex VFinVGFriendGraphV2¬V=2¬V=3GRegUSGraphKV=0V=1V=3
103 102 com23 VFinGFriendGraphVV2¬V=2¬V=3GRegUSGraphKV=0V=1V=3
104 103 com14 V2GFriendGraphVVFin¬V=2¬V=3GRegUSGraphKV=0V=1V=3
105 104 3imp V2GFriendGraphVVFin¬V=2¬V=3GRegUSGraphKV=0V=1V=3
106 105 com3r ¬V=2V2GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
107 34 106 pm2.61i V2GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
108 107 3exp V2GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
109 11 108 sylbir VV1GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
110 109 ex VV1GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
111 10 110 biimtrrid V¬V=1GFriendGraphVVFin¬V=3GRegUSGraphKV=0V=1V=3
112 111 com25 VVFinGFriendGraphV¬V=1¬V=3GRegUSGraphKV=0V=1V=3
113 9 112 sylbir V0V0VFinGFriendGraphV¬V=1¬V=3GRegUSGraphKV=0V=1V=3
114 113 ex V0V0VFinGFriendGraphV¬V=1¬V=3GRegUSGraphKV=0V=1V=3
115 114 impcomd V0VFinV0GFriendGraphV¬V=1¬V=3GRegUSGraphKV=0V=1V=3
116 115 com14 VVFinV0GFriendGraphV0¬V=1¬V=3GRegUSGraphKV=0V=1V=3
117 8 116 mpcom VFinV0GFriendGraphV0¬V=1¬V=3GRegUSGraphKV=0V=1V=3
118 117 ex VFinV0GFriendGraphV0¬V=1¬V=3GRegUSGraphKV=0V=1V=3
119 118 com14 V0V0GFriendGraphVFin¬V=1¬V=3GRegUSGraphKV=0V=1V=3
120 5 119 biimtrrid V0¬V=0GFriendGraphVFin¬V=1¬V=3GRegUSGraphKV=0V=1V=3
121 120 com24 V0VFinGFriendGraph¬V=0¬V=1¬V=3GRegUSGraphKV=0V=1V=3
122 121 3imp V0VFinGFriendGraph¬V=0¬V=1¬V=3GRegUSGraphKV=0V=1V=3
123 122 com25 V0VFinGFriendGraphGRegUSGraphK¬V=1¬V=3¬V=0V=0V=1V=3
124 123 imp V0VFinGFriendGraphGRegUSGraphK¬V=1¬V=3¬V=0V=0V=1V=3
125 124 com14 ¬V=0¬V=1¬V=3V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
126 125 3imp ¬V=0¬V=1¬V=3V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
127 4 126 sylbi ¬V=0V=1V=3V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
128 3 127 pm2.61i V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
129 128 3exp1 V0VFinGFriendGraphGRegUSGraphKV=0V=1V=3
130 2 129 mpcom VFinGFriendGraphGRegUSGraphKV=0V=1V=3
131 130 3imp21 GFriendGraphVFinGRegUSGraphKV=0V=1V=3