| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrreggt1.v |
|
| 2 |
|
hashcl |
|
| 3 |
|
ax-1 |
|
| 4 |
|
3ioran |
|
| 5 |
|
df-ne |
|
| 6 |
|
hasheq0 |
|
| 7 |
6
|
necon3bid |
|
| 8 |
7
|
biimpa |
|
| 9 |
|
elnnne0 |
|
| 10 |
|
df-ne |
|
| 11 |
|
eluz2b3 |
|
| 12 |
|
hash2prde |
|
| 13 |
|
vex |
|
| 14 |
13
|
a1i |
|
| 15 |
|
vex |
|
| 16 |
15
|
a1i |
|
| 17 |
|
id |
|
| 18 |
14 16 17
|
3jca |
|
| 19 |
1
|
eqeq1i |
|
| 20 |
19
|
biimpi |
|
| 21 |
|
nfrgr2v |
|
| 22 |
18 20 21
|
syl2an |
|
| 23 |
|
df-nel |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
pm2.21d |
|
| 26 |
25
|
com23 |
|
| 27 |
26
|
exlimivv |
|
| 28 |
12 27
|
syl |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
com23 |
|
| 31 |
30
|
com14 |
|
| 32 |
31
|
a1i |
|
| 33 |
32
|
3imp |
|
| 34 |
33
|
com12 |
|
| 35 |
|
eqid |
|
| 36 |
1 35
|
rusgrprop0 |
|
| 37 |
|
eluz2gt1 |
|
| 38 |
37
|
anim1ci |
|
| 39 |
1
|
vdgn0frgrv2 |
|
| 40 |
39
|
impancom |
|
| 41 |
40
|
ralrimiv |
|
| 42 |
|
eqeq2 |
|
| 43 |
42
|
ralbidv |
|
| 44 |
|
r19.26 |
|
| 45 |
|
nne |
|
| 46 |
45
|
bicomi |
|
| 47 |
46
|
anbi1i |
|
| 48 |
|
ancom |
|
| 49 |
|
pm3.24 |
|
| 50 |
49
|
bifal |
|
| 51 |
47 48 50
|
3bitri |
|
| 52 |
51
|
ralbii |
|
| 53 |
|
r19.3rzv |
|
| 54 |
|
falim |
|
| 55 |
53 54
|
biimtrrdi |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
com12 |
|
| 58 |
52 57
|
sylbi |
|
| 59 |
44 58
|
sylbir |
|
| 60 |
59
|
ex |
|
| 61 |
43 60
|
biimtrdi |
|
| 62 |
61
|
com4t |
|
| 63 |
38 41 62
|
3syl |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
com25 |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
com15 |
|
| 68 |
67
|
com12 |
|
| 69 |
68
|
3ad2ant3 |
|
| 70 |
36 69
|
syl |
|
| 71 |
70
|
impcom |
|
| 72 |
71
|
impcom |
|
| 73 |
1
|
frrusgrord |
|
| 74 |
73
|
imp |
|
| 75 |
|
id |
|
| 76 |
|
oveq1 |
|
| 77 |
75 76
|
oveq12d |
|
| 78 |
77
|
oveq1d |
|
| 79 |
|
2m1e1 |
|
| 80 |
79
|
oveq2i |
|
| 81 |
|
2t1e2 |
|
| 82 |
80 81
|
eqtri |
|
| 83 |
82
|
oveq1i |
|
| 84 |
|
2p1e3 |
|
| 85 |
83 84
|
eqtri |
|
| 86 |
78 85
|
eqtrdi |
|
| 87 |
86
|
eqeq2d |
|
| 88 |
|
pm2.21 |
|
| 89 |
88
|
ad2antrr |
|
| 90 |
89
|
com12 |
|
| 91 |
87 90
|
biimtrdi |
|
| 92 |
74 91
|
syl5com |
|
| 93 |
1
|
frgrreg |
|
| 94 |
93
|
imp |
|
| 95 |
72 92 94
|
mpjaod |
|
| 96 |
95
|
exp32 |
|
| 97 |
96
|
com34 |
|
| 98 |
97
|
com23 |
|
| 99 |
98
|
exp4c |
|
| 100 |
99
|
com34 |
|
| 101 |
100
|
com25 |
|
| 102 |
101
|
ex |
|
| 103 |
102
|
com23 |
|
| 104 |
103
|
com14 |
|
| 105 |
104
|
3imp |
|
| 106 |
105
|
com3r |
|
| 107 |
34 106
|
pm2.61i |
|
| 108 |
107
|
3exp |
|
| 109 |
11 108
|
sylbir |
|
| 110 |
109
|
ex |
|
| 111 |
10 110
|
biimtrrid |
|
| 112 |
111
|
com25 |
|
| 113 |
9 112
|
sylbir |
|
| 114 |
113
|
ex |
|
| 115 |
114
|
impcomd |
|
| 116 |
115
|
com14 |
|
| 117 |
8 116
|
mpcom |
|
| 118 |
117
|
ex |
|
| 119 |
118
|
com14 |
|
| 120 |
5 119
|
biimtrrid |
|
| 121 |
120
|
com24 |
|
| 122 |
121
|
3imp |
|
| 123 |
122
|
com25 |
|
| 124 |
123
|
imp |
|
| 125 |
124
|
com14 |
|
| 126 |
125
|
3imp |
|
| 127 |
4 126
|
sylbi |
|
| 128 |
3 127
|
pm2.61i |
|
| 129 |
128
|
3exp1 |
|
| 130 |
2 129
|
mpcom |
|
| 131 |
130
|
3imp21 |
|