Metamath Proof Explorer


Theorem friendshipgt3

Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V=VtxG
Assertion friendshipgt3 GFriendGraphVFin3<VvVwVvvwEdgG

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V=VtxG
2 eqid EdgG=EdgG
3 1 2 frgrregorufrg GFriendGraphk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG
4 3 3ad2ant1 GFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG
5 1 frgrogt3nreg GFriendGraphVFin3<Vk0¬GRegUSGraphk
6 frgrusgr GFriendGraphGUSGraph
7 6 anim1i GFriendGraphVFinGUSGraphVFin
8 1 isfusgr GFinUSGraphGUSGraphVFin
9 7 8 sylibr GFriendGraphVFinGFinUSGraph
10 9 3adant3 GFriendGraphVFin3<VGFinUSGraph
11 0red VFin3<V0
12 3re 3
13 12 a1i VFin3<V3
14 hashcl VFinV0
15 14 nn0red VFinV
16 15 adantr VFin3<VV
17 3pos 0<3
18 17 a1i VFin3<V0<3
19 simpr VFin3<V3<V
20 11 13 16 18 19 lttrd VFin3<V0<V
21 20 gt0ne0d VFin3<VV0
22 hasheq0 VFinV=0V=
23 22 adantr VFin3<VV=0V=
24 23 necon3bid VFin3<VV0V
25 21 24 mpbid VFin3<VV
26 25 3adant1 GFriendGraphVFin3<VV
27 1 fusgrn0degnn0 GFinUSGraphVtVm0VtxDegGt=m
28 10 26 27 syl2anc GFriendGraphVFin3<VtVm0VtxDegGt=m
29 r19.26 k0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphk
30 simpllr tVm0VtxDegGt=mGFriendGraphVFin3<Vm0
31 fveqeq2 u=tVtxDegGu=mVtxDegGt=m
32 31 rspcev tVVtxDegGt=muVVtxDegGu=m
33 32 ad4ant13 tVm0VtxDegGt=mGFriendGraphVFin3<VuVVtxDegGu=m
34 ornld uVVtxDegGu=muVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphmvVwVvvwEdgG
35 33 34 syl tVm0VtxDegGt=mGFriendGraphVFin3<VuVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphmvVwVvvwEdgG
36 35 adantr tVm0VtxDegGt=mGFriendGraphVFin3<Vk=muVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphmvVwVvvwEdgG
37 eqeq2 k=mVtxDegGu=kVtxDegGu=m
38 37 rexbidv k=muVVtxDegGu=kuVVtxDegGu=m
39 breq2 k=mGRegUSGraphkGRegUSGraphm
40 39 orbi1d k=mGRegUSGraphkvVwVvvwEdgGGRegUSGraphmvVwVvvwEdgG
41 38 40 imbi12d k=muVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGuVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG
42 39 notbid k=m¬GRegUSGraphk¬GRegUSGraphm
43 41 42 anbi12d k=muVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkuVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphm
44 43 imbi1d k=muVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkvVwVvvwEdgGuVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphmvVwVvvwEdgG
45 44 adantl tVm0VtxDegGt=mGFriendGraphVFin3<Vk=muVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkvVwVvvwEdgGuVVtxDegGu=mGRegUSGraphmvVwVvvwEdgG¬GRegUSGraphmvVwVvvwEdgG
46 36 45 mpbird tVm0VtxDegGt=mGFriendGraphVFin3<Vk=muVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkvVwVvvwEdgG
47 30 46 rspcimdv tVm0VtxDegGt=mGFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphkvVwVvvwEdgG
48 47 com12 k0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgG¬GRegUSGraphktVm0VtxDegGt=mGFriendGraphVFin3<VvVwVvvwEdgG
49 29 48 sylbir k0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphktVm0VtxDegGt=mGFriendGraphVFin3<VvVwVvvwEdgG
50 49 expcom k0¬GRegUSGraphkk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGtVm0VtxDegGt=mGFriendGraphVFin3<VvVwVvvwEdgG
51 50 com13 tVm0VtxDegGt=mGFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphkvVwVvvwEdgG
52 51 exp31 tVm0VtxDegGt=mGFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphkvVwVvvwEdgG
53 52 rexlimivv tVm0VtxDegGt=mGFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphkvVwVvvwEdgG
54 28 53 mpcom GFriendGraphVFin3<Vk0uVVtxDegGu=kGRegUSGraphkvVwVvvwEdgGk0¬GRegUSGraphkvVwVvvwEdgG
55 4 5 54 mp2d GFriendGraphVFin3<VvVwVvvwEdgG