Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frgrreggt1.v | |
|
Assertion | friendshipgt3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrreggt1.v | |
|
2 | eqid | |
|
3 | 1 2 | frgrregorufrg | |
4 | 3 | 3ad2ant1 | |
5 | 1 | frgrogt3nreg | |
6 | frgrusgr | |
|
7 | 6 | anim1i | |
8 | 1 | isfusgr | |
9 | 7 8 | sylibr | |
10 | 9 | 3adant3 | |
11 | 0red | |
|
12 | 3re | |
|
13 | 12 | a1i | |
14 | hashcl | |
|
15 | 14 | nn0red | |
16 | 15 | adantr | |
17 | 3pos | |
|
18 | 17 | a1i | |
19 | simpr | |
|
20 | 11 13 16 18 19 | lttrd | |
21 | 20 | gt0ne0d | |
22 | hasheq0 | |
|
23 | 22 | adantr | |
24 | 23 | necon3bid | |
25 | 21 24 | mpbid | |
26 | 25 | 3adant1 | |
27 | 1 | fusgrn0degnn0 | |
28 | 10 26 27 | syl2anc | |
29 | r19.26 | |
|
30 | simpllr | |
|
31 | fveqeq2 | |
|
32 | 31 | rspcev | |
33 | 32 | ad4ant13 | |
34 | ornld | |
|
35 | 33 34 | syl | |
36 | 35 | adantr | |
37 | eqeq2 | |
|
38 | 37 | rexbidv | |
39 | breq2 | |
|
40 | 39 | orbi1d | |
41 | 38 40 | imbi12d | |
42 | 39 | notbid | |
43 | 41 42 | anbi12d | |
44 | 43 | imbi1d | |
45 | 44 | adantl | |
46 | 36 45 | mpbird | |
47 | 30 46 | rspcimdv | |
48 | 47 | com12 | |
49 | 29 48 | sylbir | |
50 | 49 | expcom | |
51 | 50 | com13 | |
52 | 51 | exp31 | |
53 | 52 | rexlimivv | |
54 | 28 53 | mpcom | |
55 | 4 5 54 | mp2d | |