Metamath Proof Explorer


Theorem frlmssuvc1

Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 24-Jun-2019)

Ref Expression
Hypotheses frlmssuvc1.f F=RfreeLModI
frlmssuvc1.u U=RunitVecI
frlmssuvc1.b B=BaseF
frlmssuvc1.k K=BaseR
frlmssuvc1.t ·˙=F
frlmssuvc1.z 0˙=0R
frlmssuvc1.c C=xB|xsupp0˙J
frlmssuvc1.r φRRing
frlmssuvc1.i φIV
frlmssuvc1.j φJI
frlmssuvc1.l φLJ
frlmssuvc1.x φXK
Assertion frlmssuvc1 φX·˙ULC

Proof

Step Hyp Ref Expression
1 frlmssuvc1.f F=RfreeLModI
2 frlmssuvc1.u U=RunitVecI
3 frlmssuvc1.b B=BaseF
4 frlmssuvc1.k K=BaseR
5 frlmssuvc1.t ·˙=F
6 frlmssuvc1.z 0˙=0R
7 frlmssuvc1.c C=xB|xsupp0˙J
8 frlmssuvc1.r φRRing
9 frlmssuvc1.i φIV
10 frlmssuvc1.j φJI
11 frlmssuvc1.l φLJ
12 frlmssuvc1.x φXK
13 1 frlmlmod RRingIVFLMod
14 8 9 13 syl2anc φFLMod
15 eqid LSubSpF=LSubSpF
16 1 15 3 6 7 frlmsslss2 RRingIVJICLSubSpF
17 8 9 10 16 syl3anc φCLSubSpF
18 1 frlmsca RRingIVR=ScalarF
19 8 9 18 syl2anc φR=ScalarF
20 19 fveq2d φBaseR=BaseScalarF
21 4 20 eqtrid φK=BaseScalarF
22 12 21 eleqtrd φXBaseScalarF
23 2 1 3 uvcff RRingIVU:IB
24 8 9 23 syl2anc φU:IB
25 10 11 sseldd φLI
26 24 25 ffvelcdmd φULB
27 1 4 3 frlmbasf IVULBUL:IK
28 9 26 27 syl2anc φUL:IK
29 8 adantr φxIJRRing
30 9 adantr φxIJIV
31 25 adantr φxIJLI
32 eldifi xIJxI
33 32 adantl φxIJxI
34 disjdif JIJ=
35 simpr φxIJxIJ
36 disjne JIJ=LJxIJLx
37 34 11 35 36 mp3an2ani φxIJLx
38 2 29 30 31 33 37 6 uvcvv0 φxIJULx=0˙
39 28 38 suppss φULsupp0˙J
40 oveq1 x=ULxsupp0˙=ULsupp0˙
41 40 sseq1d x=ULxsupp0˙JULsupp0˙J
42 41 7 elrab2 ULCULBULsupp0˙J
43 26 39 42 sylanbrc φULC
44 eqid ScalarF=ScalarF
45 eqid BaseScalarF=BaseScalarF
46 44 5 45 15 lssvscl FLModCLSubSpFXBaseScalarFULCX·˙ULC
47 14 17 22 43 46 syl22anc φX·˙ULC