Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmsubval.y | |
|
frlmsubval.b | |
||
frlmsubval.r | |
||
frlmsubval.i | |
||
frlmsubval.f | |
||
frlmsubval.g | |
||
frlmsubval.a | |
||
frlmsubval.p | |
||
Assertion | frlmsubgval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsubval.y | |
|
2 | frlmsubval.b | |
|
3 | frlmsubval.r | |
|
4 | frlmsubval.i | |
|
5 | frlmsubval.f | |
|
6 | frlmsubval.g | |
|
7 | frlmsubval.a | |
|
8 | frlmsubval.p | |
|
9 | 1 2 | frlmpws | |
10 | 3 4 9 | syl2anc | |
11 | 10 | fveq2d | |
12 | 8 11 | eqtrid | |
13 | 12 | oveqd | |
14 | rlmlmod | |
|
15 | 3 14 | syl | |
16 | eqid | |
|
17 | 16 | pwslmod | |
18 | 15 4 17 | syl2anc | |
19 | eqid | |
|
20 | 1 2 19 | frlmlss | |
21 | 3 4 20 | syl2anc | |
22 | 19 | lsssubg | |
23 | 18 21 22 | syl2anc | |
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | 24 25 26 | subgsub | |
28 | 23 5 6 27 | syl3anc | |
29 | lmodgrp | |
|
30 | 3 14 29 | 3syl | |
31 | eqid | |
|
32 | 1 31 2 | frlmbasmap | |
33 | 4 5 32 | syl2anc | |
34 | rlmbas | |
|
35 | 16 34 | pwsbas | |
36 | 30 4 35 | syl2anc | |
37 | 33 36 | eleqtrd | |
38 | 1 31 2 | frlmbasmap | |
39 | 4 6 38 | syl2anc | |
40 | 39 36 | eleqtrd | |
41 | eqid | |
|
42 | rlmsub | |
|
43 | 7 42 | eqtri | |
44 | 16 41 43 24 | pwssub | |
45 | 30 4 37 40 44 | syl22anc | |
46 | 13 28 45 | 3eqtr2d | |