Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | frpomin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | rabeq0 | |
|
3 | simprr | |
|
4 | breq1 | |
|
5 | 4 | notbid | |
6 | 5 | cbvralvw | |
7 | breq2 | |
|
8 | 7 | notbid | |
9 | 8 | ralbidv | |
10 | 6 9 | bitrid | |
11 | 10 | rspcev | |
12 | 11 | ex | |
13 | 3 12 | syl | |
14 | 2 13 | biimtrid | |
15 | simprl | |
|
16 | simpl3 | |
|
17 | sess2 | |
|
18 | 15 16 17 | sylc | |
19 | seex | |
|
20 | 18 3 19 | syl2anc | |
21 | simpl1 | |
|
22 | ssrab2 | |
|
23 | 22 15 | sstrid | |
24 | fri | |
|
25 | 24 | expr | |
26 | 20 21 23 25 | syl21anc | |
27 | breq1 | |
|
28 | 27 | rexrab | |
29 | breq1 | |
|
30 | 29 | ralrab | |
31 | simprr | |
|
32 | simplr | |
|
33 | simplrl | |
|
34 | 33 | ad2antrr | |
35 | simpll2 | |
|
36 | 35 | ad2antrr | |
37 | poss | |
|
38 | 34 36 37 | sylc | |
39 | simprl | |
|
40 | simpllr | |
|
41 | simplrr | |
|
42 | 41 | ad2antrr | |
43 | potr | |
|
44 | 38 39 40 42 43 | syl13anc | |
45 | 31 32 44 | mp2and | |
46 | 45 | expr | |
47 | 46 | con3d | |
48 | idd | |
|
49 | 47 48 | jad | |
50 | 49 | ralimdva | |
51 | 30 50 | biimtrid | |
52 | 51 | expimpd | |
53 | 52 | reximdva | |
54 | 28 53 | biimtrid | |
55 | 26 54 | syld | |
56 | 14 55 | pm2.61dne | |
57 | 56 | expr | |
58 | 57 | exlimdv | |
59 | 1 58 | biimtrid | |
60 | 59 | impr | |