Metamath Proof Explorer


Theorem frpomin

Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)

Ref Expression
Assertion frpomin RFrARPoARSeABABxByB¬yRx

Proof

Step Hyp Ref Expression
1 n0 BzzB
2 rabeq0 wB|wRz=wB¬wRz
3 simprr RFrARPoARSeABAzBzB
4 breq1 y=wyRxwRx
5 4 notbid y=w¬yRx¬wRx
6 5 cbvralvw yB¬yRxwB¬wRx
7 breq2 x=zwRxwRz
8 7 notbid x=z¬wRx¬wRz
9 8 ralbidv x=zwB¬wRxwB¬wRz
10 6 9 bitrid x=zyB¬yRxwB¬wRz
11 10 rspcev zBwB¬wRzxByB¬yRx
12 11 ex zBwB¬wRzxByB¬yRx
13 3 12 syl RFrARPoARSeABAzBwB¬wRzxByB¬yRx
14 2 13 biimtrid RFrARPoARSeABAzBwB|wRz=xByB¬yRx
15 simprl RFrARPoARSeABAzBBA
16 simpl3 RFrARPoARSeABAzBRSeA
17 sess2 BARSeARSeB
18 15 16 17 sylc RFrARPoARSeABAzBRSeB
19 seex RSeBzBwB|wRzV
20 18 3 19 syl2anc RFrARPoARSeABAzBwB|wRzV
21 simpl1 RFrARPoARSeABAzBRFrA
22 ssrab2 wB|wRzB
23 22 15 sstrid RFrARPoARSeABAzBwB|wRzA
24 fri wB|wRzVRFrAwB|wRzAwB|wRzxwB|wRzywB|wRz¬yRx
25 24 expr wB|wRzVRFrAwB|wRzAwB|wRzxwB|wRzywB|wRz¬yRx
26 20 21 23 25 syl21anc RFrARPoARSeABAzBwB|wRzxwB|wRzywB|wRz¬yRx
27 breq1 w=xwRzxRz
28 27 rexrab xwB|wRzywB|wRz¬yRxxBxRzywB|wRz¬yRx
29 breq1 w=ywRzyRz
30 29 ralrab ywB|wRz¬yRxyByRz¬yRx
31 simprr RFrARPoARSeABAzBxBxRzyByRxyRx
32 simplr RFrARPoARSeABAzBxBxRzyByRxxRz
33 simplrl RFrARPoARSeABAzBxBBA
34 33 ad2antrr RFrARPoARSeABAzBxBxRzyByRxBA
35 simpll2 RFrARPoARSeABAzBxBRPoA
36 35 ad2antrr RFrARPoARSeABAzBxBxRzyByRxRPoA
37 poss BARPoARPoB
38 34 36 37 sylc RFrARPoARSeABAzBxBxRzyByRxRPoB
39 simprl RFrARPoARSeABAzBxBxRzyByRxyB
40 simpllr RFrARPoARSeABAzBxBxRzyByRxxB
41 simplrr RFrARPoARSeABAzBxBzB
42 41 ad2antrr RFrARPoARSeABAzBxBxRzyByRxzB
43 potr RPoByBxBzByRxxRzyRz
44 38 39 40 42 43 syl13anc RFrARPoARSeABAzBxBxRzyByRxyRxxRzyRz
45 31 32 44 mp2and RFrARPoARSeABAzBxBxRzyByRxyRz
46 45 expr RFrARPoARSeABAzBxBxRzyByRxyRz
47 46 con3d RFrARPoARSeABAzBxBxRzyB¬yRz¬yRx
48 idd RFrARPoARSeABAzBxBxRzyB¬yRx¬yRx
49 47 48 jad RFrARPoARSeABAzBxBxRzyByRz¬yRx¬yRx
50 49 ralimdva RFrARPoARSeABAzBxBxRzyByRz¬yRxyB¬yRx
51 30 50 biimtrid RFrARPoARSeABAzBxBxRzywB|wRz¬yRxyB¬yRx
52 51 expimpd RFrARPoARSeABAzBxBxRzywB|wRz¬yRxyB¬yRx
53 52 reximdva RFrARPoARSeABAzBxBxRzywB|wRz¬yRxxByB¬yRx
54 28 53 biimtrid RFrARPoARSeABAzBxwB|wRzywB|wRz¬yRxxByB¬yRx
55 26 54 syld RFrARPoARSeABAzBwB|wRzxByB¬yRx
56 14 55 pm2.61dne RFrARPoARSeABAzBxByB¬yRx
57 56 expr RFrARPoARSeABAzBxByB¬yRx
58 57 exlimdv RFrARPoARSeABAzzBxByB¬yRx
59 1 58 biimtrid RFrARPoARSeABABxByB¬yRx
60 59 impr RFrARPoARSeABABxByB¬yRx