| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsummulc2.1 |  | 
						
							| 2 |  | fsummulc2.2 |  | 
						
							| 3 |  | fsummulc2.3 |  | 
						
							| 4 | 2 | mul01d |  | 
						
							| 5 |  | sumeq1 |  | 
						
							| 6 |  | sum0 |  | 
						
							| 7 | 5 6 | eqtrdi |  | 
						
							| 8 | 7 | oveq2d |  | 
						
							| 9 |  | sumeq1 |  | 
						
							| 10 |  | sum0 |  | 
						
							| 11 | 9 10 | eqtrdi |  | 
						
							| 12 | 8 11 | eqeq12d |  | 
						
							| 13 | 4 12 | syl5ibrcom |  | 
						
							| 14 |  | addcl |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 2 | adantr |  | 
						
							| 17 |  | adddi |  | 
						
							| 18 | 17 | 3expb |  | 
						
							| 19 | 16 18 | sylan |  | 
						
							| 20 |  | simprl |  | 
						
							| 21 |  | nnuz |  | 
						
							| 22 | 20 21 | eleqtrdi |  | 
						
							| 23 | 3 | fmpttd |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | f1of |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 |  | fco |  | 
						
							| 30 | 24 28 29 | syl2anc |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 30 31 | ffvelcdmd |  | 
						
							| 33 | 28 31 | ffvelcdmd |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 2 | adantr |  | 
						
							| 36 | 35 3 | mulcld |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | fvmpt2 |  | 
						
							| 39 | 34 36 38 | syl2anc |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 40 | fvmpt2 |  | 
						
							| 42 | 34 3 41 | syl2anc |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 | 39 43 | eqtr4d |  | 
						
							| 45 | 44 | ralrimiva |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 |  | nffvmpt1 |  | 
						
							| 48 |  | nfcv |  | 
						
							| 49 |  | nfcv |  | 
						
							| 50 |  | nffvmpt1 |  | 
						
							| 51 | 48 49 50 | nfov |  | 
						
							| 52 | 47 51 | nfeq |  | 
						
							| 53 |  | fveq2 |  | 
						
							| 54 |  | fveq2 |  | 
						
							| 55 | 54 | oveq2d |  | 
						
							| 56 | 53 55 | eqeq12d |  | 
						
							| 57 | 52 56 | rspc |  | 
						
							| 58 | 33 46 57 | sylc |  | 
						
							| 59 | 27 | ad2antll |  | 
						
							| 60 |  | fvco3 |  | 
						
							| 61 | 59 60 | sylan |  | 
						
							| 62 |  | fvco3 |  | 
						
							| 63 | 59 62 | sylan |  | 
						
							| 64 | 63 | oveq2d |  | 
						
							| 65 | 58 61 64 | 3eqtr4d |  | 
						
							| 66 | 15 19 22 32 65 | seqdistr |  | 
						
							| 67 |  | fveq2 |  | 
						
							| 68 | 36 | fmpttd |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 | 69 | ffvelcdmda |  | 
						
							| 71 | 67 20 25 70 61 | fsum |  | 
						
							| 72 |  | fveq2 |  | 
						
							| 73 | 23 | adantr |  | 
						
							| 74 | 73 | ffvelcdmda |  | 
						
							| 75 | 72 20 25 74 63 | fsum |  | 
						
							| 76 | 75 | oveq2d |  | 
						
							| 77 | 66 71 76 | 3eqtr4rd |  | 
						
							| 78 |  | sumfc |  | 
						
							| 79 | 78 | oveq2i |  | 
						
							| 80 |  | sumfc |  | 
						
							| 81 | 77 79 80 | 3eqtr3g |  | 
						
							| 82 | 81 | expr |  | 
						
							| 83 | 82 | exlimdv |  | 
						
							| 84 | 83 | expimpd |  | 
						
							| 85 |  | fz1f1o |  | 
						
							| 86 | 1 85 | syl |  | 
						
							| 87 | 13 84 86 | mpjaod |  |