Metamath Proof Explorer


Theorem fsummulc2

Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsummulc2.1 φAFin
fsummulc2.2 φC
fsummulc2.3 φkAB
Assertion fsummulc2 φCkAB=kACB

Proof

Step Hyp Ref Expression
1 fsummulc2.1 φAFin
2 fsummulc2.2 φC
3 fsummulc2.3 φkAB
4 2 mul01d φC0=0
5 sumeq1 A=kAB=kB
6 sum0 kB=0
7 5 6 eqtrdi A=kAB=0
8 7 oveq2d A=CkAB=C0
9 sumeq1 A=kACB=kCB
10 sum0 kCB=0
11 9 10 eqtrdi A=kACB=0
12 8 11 eqeq12d A=CkAB=kACBC0=0
13 4 12 syl5ibrcom φA=CkAB=kACB
14 addcl nmn+m
15 14 adantl φAf:1A1-1 ontoAnmn+m
16 2 adantr φAf:1A1-1 ontoAC
17 adddi CnmCn+m=Cn+Cm
18 17 3expb CnmCn+m=Cn+Cm
19 16 18 sylan φAf:1A1-1 ontoAnmCn+m=Cn+Cm
20 simprl φAf:1A1-1 ontoAA
21 nnuz =1
22 20 21 eleqtrdi φAf:1A1-1 ontoAA1
23 3 fmpttd φkAB:A
24 23 ad2antrr φAf:1A1-1 ontoAn1AkAB:A
25 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
26 25 adantr φAf:1A1-1 ontoAn1Af:1A1-1 ontoA
27 f1of f:1A1-1 ontoAf:1AA
28 26 27 syl φAf:1A1-1 ontoAn1Af:1AA
29 fco kAB:Af:1AAkABf:1A
30 24 28 29 syl2anc φAf:1A1-1 ontoAn1AkABf:1A
31 simpr φAf:1A1-1 ontoAn1An1A
32 30 31 ffvelcdmd φAf:1A1-1 ontoAn1AkABfn
33 28 31 ffvelcdmd φAf:1A1-1 ontoAn1AfnA
34 simpr φkAkA
35 2 adantr φkAC
36 35 3 mulcld φkACB
37 eqid kACB=kACB
38 37 fvmpt2 kACBkACBk=CB
39 34 36 38 syl2anc φkAkACBk=CB
40 eqid kAB=kAB
41 40 fvmpt2 kABkABk=B
42 34 3 41 syl2anc φkAkABk=B
43 42 oveq2d φkACkABk=CB
44 39 43 eqtr4d φkAkACBk=CkABk
45 44 ralrimiva φkAkACBk=CkABk
46 45 ad2antrr φAf:1A1-1 ontoAn1AkAkACBk=CkABk
47 nffvmpt1 _kkACBfn
48 nfcv _kC
49 nfcv _k×
50 nffvmpt1 _kkABfn
51 48 49 50 nfov _kCkABfn
52 47 51 nfeq kkACBfn=CkABfn
53 fveq2 k=fnkACBk=kACBfn
54 fveq2 k=fnkABk=kABfn
55 54 oveq2d k=fnCkABk=CkABfn
56 53 55 eqeq12d k=fnkACBk=CkABkkACBfn=CkABfn
57 52 56 rspc fnAkAkACBk=CkABkkACBfn=CkABfn
58 33 46 57 sylc φAf:1A1-1 ontoAn1AkACBfn=CkABfn
59 27 ad2antll φAf:1A1-1 ontoAf:1AA
60 fvco3 f:1AAn1AkACBfn=kACBfn
61 59 60 sylan φAf:1A1-1 ontoAn1AkACBfn=kACBfn
62 fvco3 f:1AAn1AkABfn=kABfn
63 59 62 sylan φAf:1A1-1 ontoAn1AkABfn=kABfn
64 63 oveq2d φAf:1A1-1 ontoAn1ACkABfn=CkABfn
65 58 61 64 3eqtr4d φAf:1A1-1 ontoAn1AkACBfn=CkABfn
66 15 19 22 32 65 seqdistr φAf:1A1-1 ontoAseq1+kACBfA=Cseq1+kABfA
67 fveq2 m=fnkACBm=kACBfn
68 36 fmpttd φkACB:A
69 68 adantr φAf:1A1-1 ontoAkACB:A
70 69 ffvelcdmda φAf:1A1-1 ontoAmAkACBm
71 67 20 25 70 61 fsum φAf:1A1-1 ontoAmAkACBm=seq1+kACBfA
72 fveq2 m=fnkABm=kABfn
73 23 adantr φAf:1A1-1 ontoAkAB:A
74 73 ffvelcdmda φAf:1A1-1 ontoAmAkABm
75 72 20 25 74 63 fsum φAf:1A1-1 ontoAmAkABm=seq1+kABfA
76 75 oveq2d φAf:1A1-1 ontoACmAkABm=Cseq1+kABfA
77 66 71 76 3eqtr4rd φAf:1A1-1 ontoACmAkABm=mAkACBm
78 sumfc mAkABm=kAB
79 78 oveq2i CmAkABm=CkAB
80 sumfc mAkACBm=kACB
81 77 79 80 3eqtr3g φAf:1A1-1 ontoACkAB=kACB
82 81 expr φAf:1A1-1 ontoACkAB=kACB
83 82 exlimdv φAff:1A1-1 ontoACkAB=kACB
84 83 expimpd φAff:1A1-1 ontoACkAB=kACB
85 fz1f1o AFinA=Aff:1A1-1 ontoA
86 1 85 syl φA=Aff:1A1-1 ontoA
87 13 84 86 mpjaod φCkAB=kACB