| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsupp0.a |  | 
						
							| 2 |  | fsumsupp0.f |  | 
						
							| 3 | 2 | ffnd |  | 
						
							| 4 |  | 0red |  | 
						
							| 5 |  | suppvalfn |  | 
						
							| 6 | 3 1 4 5 | syl3anc |  | 
						
							| 7 |  | ssrab2 |  | 
						
							| 8 | 6 7 | eqsstrdi |  | 
						
							| 9 | 2 | adantr |  | 
						
							| 10 | 8 | sselda |  | 
						
							| 11 | 9 10 | ffvelcdmd |  | 
						
							| 12 |  | eldifi |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | neqne |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 13 15 | jca |  | 
						
							| 17 |  | rabid |  | 
						
							| 18 | 16 17 | sylibr |  | 
						
							| 19 | 18 | adantll |  | 
						
							| 20 | 6 | eleq2d |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 | 19 21 | mpbird |  | 
						
							| 23 |  | eldifn |  | 
						
							| 24 | 23 | ad2antlr |  | 
						
							| 25 | 22 24 | condan |  | 
						
							| 26 | 8 11 25 1 | fsumss |  |