Metamath Proof Explorer


Theorem fsumsupp0

Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fsumsupp0.a φAFin
fsumsupp0.f φF:A
Assertion fsumsupp0 φkFsupp0Fk=kAFk

Proof

Step Hyp Ref Expression
1 fsumsupp0.a φAFin
2 fsumsupp0.f φF:A
3 2 ffnd φFFnA
4 0red φ0
5 suppvalfn FFnAAFin0Fsupp0=kA|Fk0
6 3 1 4 5 syl3anc φFsupp0=kA|Fk0
7 ssrab2 kA|Fk0A
8 6 7 eqsstrdi φFsupp0A
9 2 adantr φksupp0FF:A
10 8 sselda φksupp0FkA
11 9 10 ffvelcdmd φksupp0FFk
12 eldifi kAsupp0FkA
13 12 adantr kAsupp0F¬Fk=0kA
14 neqne ¬Fk=0Fk0
15 14 adantl kAsupp0F¬Fk=0Fk0
16 13 15 jca kAsupp0F¬Fk=0kAFk0
17 rabid kkA|Fk0kAFk0
18 16 17 sylibr kAsupp0F¬Fk=0kkA|Fk0
19 18 adantll φkAsupp0F¬Fk=0kkA|Fk0
20 6 eleq2d φksupp0FkkA|Fk0
21 20 ad2antrr φkAsupp0F¬Fk=0ksupp0FkkA|Fk0
22 19 21 mpbird φkAsupp0F¬Fk=0ksupp0F
23 eldifn kAsupp0F¬ksupp0F
24 23 ad2antlr φkAsupp0F¬Fk=0¬ksupp0F
25 22 24 condan φkAsupp0FFk=0
26 8 11 25 1 fsumss φkFsupp0Fk=kAFk