Metamath Proof Explorer


Theorem fucrid

Description: Right identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuclid.q Q=CFuncCatD
fuclid.n N=CNatD
fuclid.x ˙=compQ
fuclid.1 1˙=IdD
fuclid.r φRFNG
Assertion fucrid φRFF˙G1˙1stF=R

Proof

Step Hyp Ref Expression
1 fuclid.q Q=CFuncCatD
2 fuclid.n N=CNatD
3 fuclid.x ˙=compQ
4 fuclid.1 1˙=IdD
5 fuclid.r φRFNG
6 eqid BaseC=BaseC
7 eqid BaseD=BaseD
8 relfunc RelCFuncD
9 2 natrcl RFNGFCFuncDGCFuncD
10 5 9 syl φFCFuncDGCFuncD
11 10 simpld φFCFuncD
12 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
13 8 11 12 sylancr φ1stFCFuncD2ndF
14 6 7 13 funcf1 φ1stF:BaseCBaseD
15 fvco3 1stF:BaseCBaseDxBaseC1˙1stFx=1˙1stFx
16 14 15 sylan φxBaseC1˙1stFx=1˙1stFx
17 16 oveq2d φxBaseCRx1stFx1stFxcompD1stGx1˙1stFx=Rx1stFx1stFxcompD1stGx1˙1stFx
18 eqid HomD=HomD
19 funcrcl FCFuncDCCatDCat
20 11 19 syl φCCatDCat
21 20 simprd φDCat
22 21 adantr φxBaseCDCat
23 14 ffvelcdmda φxBaseC1stFxBaseD
24 eqid compD=compD
25 10 simprd φGCFuncD
26 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
27 8 25 26 sylancr φ1stGCFuncD2ndG
28 6 7 27 funcf1 φ1stG:BaseCBaseD
29 28 ffvelcdmda φxBaseC1stGxBaseD
30 2 5 nat1st2nd φR1stF2ndFN1stG2ndG
31 30 adantr φxBaseCR1stF2ndFN1stG2ndG
32 simpr φxBaseCxBaseC
33 2 31 6 18 32 natcl φxBaseCRx1stFxHomD1stGx
34 7 18 4 22 23 24 29 33 catrid φxBaseCRx1stFx1stFxcompD1stGx1˙1stFx=Rx
35 17 34 eqtrd φxBaseCRx1stFx1stFxcompD1stGx1˙1stFx=Rx
36 35 mpteq2dva φxBaseCRx1stFx1stFxcompD1stGx1˙1stFx=xBaseCRx
37 1 2 4 11 fucidcl φ1˙1stFFNF
38 1 2 6 24 3 37 5 fucco φRFF˙G1˙1stF=xBaseCRx1stFx1stFxcompD1stGx1˙1stFx
39 2 30 6 natfn φRFnBaseC
40 dffn5 RFnBaseCR=xBaseCRx
41 39 40 sylib φR=xBaseCRx
42 36 38 41 3eqtr4d φRFF˙G1˙1stF=R