Metamath Proof Explorer


Theorem fullsetcestrc

Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
funcsetcestrc.e E=ExtStrCatU
Assertion fullsetcestrc φFSFullEG

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 funcsetcestrc.e E=ExtStrCatU
8 1 2 3 4 5 6 7 funcsetcestrc φFSFuncEG
9 1 2 3 4 5 6 7 funcsetcestrclem8 φaCbCaGb:aHomSbFaHomEFb
10 4 adantr φaCbCUWUni
11 eqid HomE=HomE
12 1 2 3 4 5 funcsetcestrclem2 φaCFaU
13 12 adantrr φaCbCFaU
14 1 2 3 4 5 funcsetcestrclem2 φbCFbU
15 14 adantrl φaCbCFbU
16 eqid BaseFa=BaseFa
17 eqid BaseFb=BaseFb
18 7 10 11 13 15 16 17 elestrchom φaCbChFaHomEFbh:BaseFaBaseFb
19 1 2 3 funcsetcestrclem1 φaCFa=Basendxa
20 19 adantrr φaCbCFa=Basendxa
21 20 fveq2d φaCbCBaseFa=BaseBasendxa
22 eqid Basendxa=Basendxa
23 22 1strbas aCa=BaseBasendxa
24 23 ad2antrl φaCbCa=BaseBasendxa
25 21 24 eqtr4d φaCbCBaseFa=a
26 1 2 3 funcsetcestrclem1 φbCFb=Basendxb
27 26 adantrl φaCbCFb=Basendxb
28 27 fveq2d φaCbCBaseFb=BaseBasendxb
29 eqid Basendxb=Basendxb
30 29 1strbas bCb=BaseBasendxb
31 30 ad2antll φaCbCb=BaseBasendxb
32 28 31 eqtr4d φaCbCBaseFb=b
33 25 32 feq23d φaCbCh:BaseFaBaseFbh:ab
34 simpr φaCbCaCbC
35 34 ancomd φaCbCbCaC
36 elmapg bCaChbah:ab
37 35 36 syl φaCbChbah:ab
38 37 biimpar φaCbCh:abhba
39 equequ2 k=hh=kh=h
40 39 adantl φaCbCh:abk=hh=kh=h
41 eqidd φaCbCh:abh=h
42 38 40 41 rspcedvd φaCbCh:abkbah=k
43 1 2 3 4 5 6 funcsetcestrclem6 φaCbCkbaaGbk=k
44 43 3expa φaCbCkbaaGbk=k
45 44 eqeq2d φaCbCkbah=aGbkh=k
46 45 rexbidva φaCbCkbah=aGbkkbah=k
47 46 adantr φaCbCh:abkbah=aGbkkbah=k
48 42 47 mpbird φaCbCh:abkbah=aGbk
49 eqid HomS=HomS
50 1 4 setcbas φU=BaseS
51 2 50 eqtr4id φC=U
52 51 eleq2d φaCaU
53 52 biimpcd aCφaU
54 53 adantr aCbCφaU
55 54 impcom φaCbCaU
56 51 eleq2d φbCbU
57 56 biimpcd bCφbU
58 57 adantl aCbCφbU
59 58 impcom φaCbCbU
60 1 10 49 55 59 setchom φaCbCaHomSb=ba
61 60 rexeqdv φaCbCkaHomSbh=aGbkkbah=aGbk
62 61 adantr φaCbCh:abkaHomSbh=aGbkkbah=aGbk
63 48 62 mpbird φaCbCh:abkaHomSbh=aGbk
64 63 ex φaCbCh:abkaHomSbh=aGbk
65 33 64 sylbid φaCbCh:BaseFaBaseFbkaHomSbh=aGbk
66 18 65 sylbid φaCbChFaHomEFbkaHomSbh=aGbk
67 66 ralrimiv φaCbChFaHomEFbkaHomSbh=aGbk
68 dffo3 aGb:aHomSbontoFaHomEFbaGb:aHomSbFaHomEFbhFaHomEFbkaHomSbh=aGbk
69 9 67 68 sylanbrc φaCbCaGb:aHomSbontoFaHomEFb
70 69 ralrimivva φaCbCaGb:aHomSbontoFaHomEFb
71 2 11 49 isfull2 FSFullEGFSFuncEGaCbCaGb:aHomSbontoFaHomEFb
72 8 70 71 sylanbrc φFSFullEG