Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | funcnvuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq | |
|
2 | 1 | eqeq2d | |
3 | 2 | cbvrexvw | |
4 | cnveq | |
|
5 | 4 | funeqd | |
6 | sseq1 | |
|
7 | sseq2 | |
|
8 | 6 7 | orbi12d | |
9 | 8 | ralbidv | |
10 | 5 9 | anbi12d | |
11 | 10 | rspcv | |
12 | funeq | |
|
13 | 12 | biimprcd | |
14 | sseq2 | |
|
15 | sseq1 | |
|
16 | 14 15 | orbi12d | |
17 | 16 | rspcv | |
18 | cnvss | |
|
19 | cnvss | |
|
20 | 18 19 | orim12i | |
21 | sseq12 | |
|
22 | 21 | ancoms | |
23 | sseq12 | |
|
24 | 22 23 | orbi12d | |
25 | 20 24 | syl5ibrcom | |
26 | 25 | expd | |
27 | 17 26 | syl6com | |
28 | 27 | rexlimdv | |
29 | 28 | com23 | |
30 | 29 | alrimdv | |
31 | 13 30 | anim12ii | |
32 | 11 31 | syl6com | |
33 | 32 | rexlimdv | |
34 | 3 33 | biimtrid | |
35 | 34 | alrimiv | |
36 | df-ral | |
|
37 | vex | |
|
38 | eqeq1 | |
|
39 | 38 | rexbidv | |
40 | 37 39 | elab | |
41 | eqeq1 | |
|
42 | 41 | rexbidv | |
43 | 42 | ralab | |
44 | 43 | anbi2i | |
45 | 40 44 | imbi12i | |
46 | 45 | albii | |
47 | 36 46 | bitr2i | |
48 | 35 47 | sylib | |
49 | fununi | |
|
50 | 48 49 | syl | |
51 | cnvuni | |
|
52 | vex | |
|
53 | 52 | cnvex | |
54 | 53 | dfiun2 | |
55 | 51 54 | eqtri | |
56 | 55 | funeqi | |
57 | 50 56 | sylibr | |