| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnveq |
|
| 2 |
1
|
eqeq2d |
|
| 3 |
2
|
cbvrexvw |
|
| 4 |
|
cnveq |
|
| 5 |
4
|
funeqd |
|
| 6 |
|
sseq1 |
|
| 7 |
|
sseq2 |
|
| 8 |
6 7
|
orbi12d |
|
| 9 |
8
|
ralbidv |
|
| 10 |
5 9
|
anbi12d |
|
| 11 |
10
|
rspcv |
|
| 12 |
|
funeq |
|
| 13 |
12
|
biimprcd |
|
| 14 |
|
sseq2 |
|
| 15 |
|
sseq1 |
|
| 16 |
14 15
|
orbi12d |
|
| 17 |
16
|
rspcv |
|
| 18 |
|
cnvss |
|
| 19 |
|
cnvss |
|
| 20 |
18 19
|
orim12i |
|
| 21 |
|
sseq12 |
|
| 22 |
21
|
ancoms |
|
| 23 |
|
sseq12 |
|
| 24 |
22 23
|
orbi12d |
|
| 25 |
20 24
|
syl5ibrcom |
|
| 26 |
25
|
expd |
|
| 27 |
17 26
|
syl6com |
|
| 28 |
27
|
rexlimdv |
|
| 29 |
28
|
com23 |
|
| 30 |
29
|
alrimdv |
|
| 31 |
13 30
|
anim12ii |
|
| 32 |
11 31
|
syl6com |
|
| 33 |
32
|
rexlimdv |
|
| 34 |
3 33
|
biimtrid |
|
| 35 |
34
|
alrimiv |
|
| 36 |
|
df-ral |
|
| 37 |
|
vex |
|
| 38 |
|
eqeq1 |
|
| 39 |
38
|
rexbidv |
|
| 40 |
37 39
|
elab |
|
| 41 |
|
eqeq1 |
|
| 42 |
41
|
rexbidv |
|
| 43 |
42
|
ralab |
|
| 44 |
43
|
anbi2i |
|
| 45 |
40 44
|
imbi12i |
|
| 46 |
45
|
albii |
|
| 47 |
36 46
|
bitr2i |
|
| 48 |
35 47
|
sylib |
|
| 49 |
|
fununi |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
cnvuni |
|
| 52 |
|
vex |
|
| 53 |
52
|
cnvex |
|
| 54 |
53
|
dfiun2 |
|
| 55 |
51 54
|
eqtri |
|
| 56 |
55
|
funeqi |
|
| 57 |
50 56
|
sylibr |
|