Metamath Proof Explorer


Theorem funcnvuni

Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion funcnvuni fAFunf-1gAfggfFunA-1

Proof

Step Hyp Ref Expression
1 cnveq x=vx-1=v-1
2 1 eqeq2d x=vz=x-1z=v-1
3 2 cbvrexvw xAz=x-1vAz=v-1
4 cnveq f=vf-1=v-1
5 4 funeqd f=vFunf-1Funv-1
6 sseq1 f=vfgvg
7 sseq2 f=vgfgv
8 6 7 orbi12d f=vfggfvggv
9 8 ralbidv f=vgAfggfgAvggv
10 5 9 anbi12d f=vFunf-1gAfggfFunv-1gAvggv
11 10 rspcv vAfAFunf-1gAfggfFunv-1gAvggv
12 funeq z=v-1FunzFunv-1
13 12 biimprcd Funv-1z=v-1Funz
14 sseq2 g=xvgvx
15 sseq1 g=xgvxv
16 14 15 orbi12d g=xvggvvxxv
17 16 rspcv xAgAvggvvxxv
18 cnvss vxv-1x-1
19 cnvss xvx-1v-1
20 18 19 orim12i vxxvv-1x-1x-1v-1
21 sseq12 z=v-1w=x-1zwv-1x-1
22 21 ancoms w=x-1z=v-1zwv-1x-1
23 sseq12 w=x-1z=v-1wzx-1v-1
24 22 23 orbi12d w=x-1z=v-1zwwzv-1x-1x-1v-1
25 20 24 syl5ibrcom vxxvw=x-1z=v-1zwwz
26 25 expd vxxvw=x-1z=v-1zwwz
27 17 26 syl6com gAvggvxAw=x-1z=v-1zwwz
28 27 rexlimdv gAvggvxAw=x-1z=v-1zwwz
29 28 com23 gAvggvz=v-1xAw=x-1zwwz
30 29 alrimdv gAvggvz=v-1wxAw=x-1zwwz
31 13 30 anim12ii Funv-1gAvggvz=v-1FunzwxAw=x-1zwwz
32 11 31 syl6com fAFunf-1gAfggfvAz=v-1FunzwxAw=x-1zwwz
33 32 rexlimdv fAFunf-1gAfggfvAz=v-1FunzwxAw=x-1zwwz
34 3 33 biimtrid fAFunf-1gAfggfxAz=x-1FunzwxAw=x-1zwwz
35 34 alrimiv fAFunf-1gAfggfzxAz=x-1FunzwxAw=x-1zwwz
36 df-ral zy|xAy=x-1Funzwy|xAy=x-1zwwzzzy|xAy=x-1Funzwy|xAy=x-1zwwz
37 vex zV
38 eqeq1 y=zy=x-1z=x-1
39 38 rexbidv y=zxAy=x-1xAz=x-1
40 37 39 elab zy|xAy=x-1xAz=x-1
41 eqeq1 y=wy=x-1w=x-1
42 41 rexbidv y=wxAy=x-1xAw=x-1
43 42 ralab wy|xAy=x-1zwwzwxAw=x-1zwwz
44 43 anbi2i Funzwy|xAy=x-1zwwzFunzwxAw=x-1zwwz
45 40 44 imbi12i zy|xAy=x-1Funzwy|xAy=x-1zwwzxAz=x-1FunzwxAw=x-1zwwz
46 45 albii zzy|xAy=x-1Funzwy|xAy=x-1zwwzzxAz=x-1FunzwxAw=x-1zwwz
47 36 46 bitr2i zxAz=x-1FunzwxAw=x-1zwwzzy|xAy=x-1Funzwy|xAy=x-1zwwz
48 35 47 sylib fAFunf-1gAfggfzy|xAy=x-1Funzwy|xAy=x-1zwwz
49 fununi zy|xAy=x-1Funzwy|xAy=x-1zwwzFuny|xAy=x-1
50 48 49 syl fAFunf-1gAfggfFuny|xAy=x-1
51 cnvuni A-1=xAx-1
52 vex xV
53 52 cnvex x-1V
54 53 dfiun2 xAx-1=y|xAy=x-1
55 51 54 eqtri A-1=y|xAy=x-1
56 55 funeqi FunA-1Funy|xAy=x-1
57 50 56 sylibr fAFunf-1gAfggfFunA-1