Metamath Proof Explorer


Theorem fzofzim

Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzofzim KMK0MK0..^M

Proof

Step Hyp Ref Expression
1 elfz2nn0 K0MK0M0KM
2 simpl1 K0M0KMKMK0
3 necom KMMK
4 nn0re K0K
5 nn0re M0M
6 ltlen KMK<MKMMK
7 4 5 6 syl2an K0M0K<MKMMK
8 7 bicomd K0M0KMMKK<M
9 elnn0z K0K0K
10 0red KM00
11 zre KK
12 11 adantr KM0K
13 5 adantl KM0M
14 lelttr 0KM0KK<M0<M
15 10 12 13 14 syl3anc KM00KK<M0<M
16 nn0z M0M
17 elnnz MM0<M
18 17 simplbi2 M0<MM
19 16 18 syl M00<MM
20 19 adantl KM00<MM
21 15 20 syld KM00KK<MM
22 21 expd KM00KK<MM
23 22 impancom K0KM0K<MM
24 9 23 sylbi K0M0K<MM
25 24 imp K0M0K<MM
26 8 25 sylbid K0M0KMMKM
27 26 expd K0M0KMMKM
28 3 27 syl7bi K0M0KMKMM
29 28 3impia K0M0KMKMM
30 29 imp K0M0KMKMM
31 8 biimpd K0M0KMMKK<M
32 31 exp4b K0M0KMMKK<M
33 32 3imp K0M0KMMKK<M
34 3 33 biimtrid K0M0KMKMK<M
35 34 imp K0M0KMKMK<M
36 2 30 35 3jca K0M0KMKMK0MK<M
37 36 ex K0M0KMKMK0MK<M
38 1 37 sylbi K0MKMK0MK<M
39 38 impcom KMK0MK0MK<M
40 elfzo0 K0..^MK0MK<M
41 39 40 sylibr KMK0MK0..^M