Metamath Proof Explorer


Theorem gausslemma2dlem2

Description: Lemma 2 for gausslemma2d . (Contributed by AV, 4-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
Assertion gausslemma2dlem2 φk1MRk=k2

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 oveq1 x=kx2=k2
6 5 breq1d x=kx2<P2k2<P2
7 5 oveq2d x=kPx2=Pk2
8 6 5 7 ifbieq12d x=kifx2<P2x2Px2=ifk2<P2k2Pk2
9 8 adantl φk1Mx=kifx2<P2x2Px2=ifk2<P2k2Pk2
10 elfz1b k1MkMkM
11 nnre kk
12 11 adantr kMk
13 nnre MM
14 13 adantl kMM
15 2re 2
16 2pos 0<2
17 15 16 pm3.2i 20<2
18 17 a1i kM20<2
19 lemul1 kM20<2kMk2 M2
20 12 14 18 19 syl3anc kMkMk2 M2
21 1 4 gausslemma2dlem0e φ M2<P2
22 21 adantl kMφ M2<P2
23 15 a1i k2
24 11 23 remulcld kk2
25 24 adantr kMk2
26 15 a1i M2
27 13 26 remulcld M M2
28 27 adantl kM M2
29 1 gausslemma2dlem0a φP
30 29 nnred φP
31 30 rehalfcld φP2
32 lelttr k2 M2P2k2 M2 M2<P2k2<P2
33 25 28 31 32 syl2an3an kMφk2 M2 M2<P2k2<P2
34 22 33 mpan2d kMφk2 M2k2<P2
35 34 ex kMφk2 M2k2<P2
36 35 com23 kMk2 M2φk2<P2
37 20 36 sylbid kMkMφk2<P2
38 37 3impia kMkMφk2<P2
39 10 38 sylbi k1Mφk2<P2
40 39 impcom φk1Mk2<P2
41 40 adantr φk1Mx=kk2<P2
42 41 iftrued φk1Mx=kifk2<P2k2Pk2=k2
43 9 42 eqtrd φk1Mx=kifx2<P2x2Px2=k2
44 1 4 gausslemma2dlem0d φM0
45 44 nn0zd φM
46 1 2 gausslemma2dlem0b φH
47 46 nnzd φH
48 1 4 2 gausslemma2dlem0g φMH
49 eluz2 HMMHMH
50 45 47 48 49 syl3anbrc φHM
51 fzss2 HM1M1H
52 50 51 syl φ1M1H
53 52 sselda φk1Mk1H
54 ovexd φk1Mk2V
55 3 43 53 54 fvmptd2 φk1MRk=k2
56 55 ralrimiva φk1MRk=k2