Description: Lemma 2 for gausslemma2d . (Contributed by AV, 4-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gausslemma2d.p | |
|
gausslemma2d.h | |
||
gausslemma2d.r | |
||
gausslemma2d.m | |
||
Assertion | gausslemma2dlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | |
|
2 | gausslemma2d.h | |
|
3 | gausslemma2d.r | |
|
4 | gausslemma2d.m | |
|
5 | oveq1 | |
|
6 | 5 | breq1d | |
7 | 5 | oveq2d | |
8 | 6 5 7 | ifbieq12d | |
9 | 8 | adantl | |
10 | elfz1b | |
|
11 | nnre | |
|
12 | 11 | adantr | |
13 | nnre | |
|
14 | 13 | adantl | |
15 | 2re | |
|
16 | 2pos | |
|
17 | 15 16 | pm3.2i | |
18 | 17 | a1i | |
19 | lemul1 | |
|
20 | 12 14 18 19 | syl3anc | |
21 | 1 4 | gausslemma2dlem0e | |
22 | 21 | adantl | |
23 | 15 | a1i | |
24 | 11 23 | remulcld | |
25 | 24 | adantr | |
26 | 15 | a1i | |
27 | 13 26 | remulcld | |
28 | 27 | adantl | |
29 | 1 | gausslemma2dlem0a | |
30 | 29 | nnred | |
31 | 30 | rehalfcld | |
32 | lelttr | |
|
33 | 25 28 31 32 | syl2an3an | |
34 | 22 33 | mpan2d | |
35 | 34 | ex | |
36 | 35 | com23 | |
37 | 20 36 | sylbid | |
38 | 37 | 3impia | |
39 | 10 38 | sylbi | |
40 | 39 | impcom | |
41 | 40 | adantr | |
42 | 41 | iftrued | |
43 | 9 42 | eqtrd | |
44 | 1 4 | gausslemma2dlem0d | |
45 | 44 | nn0zd | |
46 | 1 2 | gausslemma2dlem0b | |
47 | 46 | nnzd | |
48 | 1 4 2 | gausslemma2dlem0g | |
49 | eluz2 | |
|
50 | 45 47 48 49 | syl3anbrc | |
51 | fzss2 | |
|
52 | 50 51 | syl | |
53 | 52 | sselda | |
54 | ovexd | |
|
55 | 3 43 53 54 | fvmptd2 | |
56 | 55 | ralrimiva | |