Metamath Proof Explorer


Theorem geolim2

Description: The partial sums in the geometric series A ^ M + A ^ ( M + 1 ) ... converge to ( ( A ^ M ) / ( 1 - A ) ) . (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses geolim.1 φ A
geolim.2 φ A < 1
geolim2.3 φ M 0
geolim2.4 φ k M F k = A k
Assertion geolim2 φ seq M + F A M 1 A

Proof

Step Hyp Ref Expression
1 geolim.1 φ A
2 geolim.2 φ A < 1
3 geolim2.3 φ M 0
4 geolim2.4 φ k M F k = A k
5 eqid M = M
6 3 nn0zd φ M
7 1 adantr φ k M A
8 eluznn0 M 0 k M k 0
9 3 8 sylan φ k M k 0
10 7 9 expcld φ k M A k
11 oveq2 n = k A n = A k
12 eqid n 0 A n = n 0 A n
13 ovex A k V
14 11 12 13 fvmpt k 0 n 0 A n k = A k
15 9 14 syl φ k M n 0 A n k = A k
16 15 4 eqtr4d φ k M n 0 A n k = F k
17 6 16 seqfeq φ seq M + n 0 A n = seq M + F
18 oveq2 n = j A n = A j
19 ovex A j V
20 18 12 19 fvmpt j 0 n 0 A n j = A j
21 20 adantl φ j 0 n 0 A n j = A j
22 1 2 21 geolim φ seq 0 + n 0 A n 1 1 A
23 seqex seq 0 + n 0 A n V
24 ovex 1 1 A V
25 23 24 breldm seq 0 + n 0 A n 1 1 A seq 0 + n 0 A n dom
26 22 25 syl φ seq 0 + n 0 A n dom
27 nn0uz 0 = 0
28 expcl A j 0 A j
29 1 28 sylan φ j 0 A j
30 21 29 eqeltrd φ j 0 n 0 A n j
31 27 3 30 iserex φ seq 0 + n 0 A n dom seq M + n 0 A n dom
32 26 31 mpbid φ seq M + n 0 A n dom
33 17 32 eqeltrrd φ seq M + F dom
34 5 6 4 10 33 isumclim2 φ seq M + F k M A k
35 14 adantl φ k 0 n 0 A n k = A k
36 expcl A k 0 A k
37 1 36 sylan φ k 0 A k
38 27 5 3 35 37 26 isumsplit φ k 0 A k = k = 0 M 1 A k + k M A k
39 0zd φ 0
40 27 39 35 37 22 isumclim φ k 0 A k = 1 1 A
41 38 40 eqtr3d φ k = 0 M 1 A k + k M A k = 1 1 A
42 1re 1
43 42 ltnri ¬ 1 < 1
44 fveq2 A = 1 A = 1
45 abs1 1 = 1
46 44 45 syl6eq A = 1 A = 1
47 46 breq1d A = 1 A < 1 1 < 1
48 43 47 mtbiri A = 1 ¬ A < 1
49 48 necon2ai A < 1 A 1
50 2 49 syl φ A 1
51 1 50 3 geoser φ k = 0 M 1 A k = 1 A M 1 A
52 51 oveq1d φ k = 0 M 1 A k + k M A k = 1 A M 1 A + k M A k
53 41 52 eqtr3d φ 1 1 A = 1 A M 1 A + k M A k
54 53 oveq1d φ 1 1 A 1 A M 1 A = 1 A M 1 A + k M A k - 1 A M 1 A
55 1cnd φ 1
56 ax-1cn 1
57 1 3 expcld φ A M
58 subcl 1 A M 1 A M
59 56 57 58 sylancr φ 1 A M
60 subcl 1 A 1 A
61 56 1 60 sylancr φ 1 A
62 50 necomd φ 1 A
63 subeq0 1 A 1 A = 0 1 = A
64 56 1 63 sylancr φ 1 A = 0 1 = A
65 64 necon3bid φ 1 A 0 1 A
66 62 65 mpbird φ 1 A 0
67 55 59 61 66 divsubdird φ 1 1 A M 1 A = 1 1 A 1 A M 1 A
68 nncan 1 A M 1 1 A M = A M
69 56 57 68 sylancr φ 1 1 A M = A M
70 69 oveq1d φ 1 1 A M 1 A = A M 1 A
71 67 70 eqtr3d φ 1 1 A 1 A M 1 A = A M 1 A
72 59 61 66 divcld φ 1 A M 1 A
73 5 6 15 10 32 isumcl φ k M A k
74 72 73 pncan2d φ 1 A M 1 A + k M A k - 1 A M 1 A = k M A k
75 54 71 74 3eqtr3rd φ k M A k = A M 1 A
76 34 75 breqtrd φ seq M + F A M 1 A