| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geolim.1 |
|
| 2 |
|
geolim.2 |
|
| 3 |
|
geolim2.3 |
|
| 4 |
|
geolim2.4 |
|
| 5 |
|
eqid |
|
| 6 |
3
|
nn0zd |
|
| 7 |
1
|
adantr |
|
| 8 |
|
eluznn0 |
|
| 9 |
3 8
|
sylan |
|
| 10 |
7 9
|
expcld |
|
| 11 |
|
oveq2 |
|
| 12 |
|
eqid |
|
| 13 |
|
ovex |
|
| 14 |
11 12 13
|
fvmpt |
|
| 15 |
9 14
|
syl |
|
| 16 |
15 4
|
eqtr4d |
|
| 17 |
6 16
|
seqfeq |
|
| 18 |
|
oveq2 |
|
| 19 |
|
ovex |
|
| 20 |
18 12 19
|
fvmpt |
|
| 21 |
20
|
adantl |
|
| 22 |
1 2 21
|
geolim |
|
| 23 |
|
seqex |
|
| 24 |
|
ovex |
|
| 25 |
23 24
|
breldm |
|
| 26 |
22 25
|
syl |
|
| 27 |
|
nn0uz |
|
| 28 |
|
expcl |
|
| 29 |
1 28
|
sylan |
|
| 30 |
21 29
|
eqeltrd |
|
| 31 |
27 3 30
|
iserex |
|
| 32 |
26 31
|
mpbid |
|
| 33 |
17 32
|
eqeltrrd |
|
| 34 |
5 6 4 10 33
|
isumclim2 |
|
| 35 |
14
|
adantl |
|
| 36 |
|
expcl |
|
| 37 |
1 36
|
sylan |
|
| 38 |
27 5 3 35 37 26
|
isumsplit |
|
| 39 |
|
0zd |
|
| 40 |
27 39 35 37 22
|
isumclim |
|
| 41 |
38 40
|
eqtr3d |
|
| 42 |
|
1re |
|
| 43 |
42
|
ltnri |
|
| 44 |
|
fveq2 |
|
| 45 |
|
abs1 |
|
| 46 |
44 45
|
eqtrdi |
|
| 47 |
46
|
breq1d |
|
| 48 |
43 47
|
mtbiri |
|
| 49 |
48
|
necon2ai |
|
| 50 |
2 49
|
syl |
|
| 51 |
1 50 3
|
geoser |
|
| 52 |
51
|
oveq1d |
|
| 53 |
41 52
|
eqtr3d |
|
| 54 |
53
|
oveq1d |
|
| 55 |
|
1cnd |
|
| 56 |
|
ax-1cn |
|
| 57 |
1 3
|
expcld |
|
| 58 |
|
subcl |
|
| 59 |
56 57 58
|
sylancr |
|
| 60 |
|
subcl |
|
| 61 |
56 1 60
|
sylancr |
|
| 62 |
50
|
necomd |
|
| 63 |
|
subeq0 |
|
| 64 |
56 1 63
|
sylancr |
|
| 65 |
64
|
necon3bid |
|
| 66 |
62 65
|
mpbird |
|
| 67 |
55 59 61 66
|
divsubdird |
|
| 68 |
|
nncan |
|
| 69 |
56 57 68
|
sylancr |
|
| 70 |
69
|
oveq1d |
|
| 71 |
67 70
|
eqtr3d |
|
| 72 |
59 61 66
|
divcld |
|
| 73 |
5 6 15 10 32
|
isumcl |
|
| 74 |
72 73
|
pncan2d |
|
| 75 |
54 71 74
|
3eqtr3rd |
|
| 76 |
34 75
|
breqtrd |
|