Metamath Proof Explorer


Theorem geolim2

Description: The partial sums in the geometric series A ^ M + A ^ ( M + 1 ) ... converge to ( ( A ^ M ) / ( 1 - A ) ) . (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses geolim.1 φA
geolim.2 φA<1
geolim2.3 φM0
geolim2.4 φkMFk=Ak
Assertion geolim2 φseqM+FAM1A

Proof

Step Hyp Ref Expression
1 geolim.1 φA
2 geolim.2 φA<1
3 geolim2.3 φM0
4 geolim2.4 φkMFk=Ak
5 eqid M=M
6 3 nn0zd φM
7 1 adantr φkMA
8 eluznn0 M0kMk0
9 3 8 sylan φkMk0
10 7 9 expcld φkMAk
11 oveq2 n=kAn=Ak
12 eqid n0An=n0An
13 ovex AkV
14 11 12 13 fvmpt k0n0Ank=Ak
15 9 14 syl φkMn0Ank=Ak
16 15 4 eqtr4d φkMn0Ank=Fk
17 6 16 seqfeq φseqM+n0An=seqM+F
18 oveq2 n=jAn=Aj
19 ovex AjV
20 18 12 19 fvmpt j0n0Anj=Aj
21 20 adantl φj0n0Anj=Aj
22 1 2 21 geolim φseq0+n0An11A
23 seqex seq0+n0AnV
24 ovex 11AV
25 23 24 breldm seq0+n0An11Aseq0+n0Andom
26 22 25 syl φseq0+n0Andom
27 nn0uz 0=0
28 expcl Aj0Aj
29 1 28 sylan φj0Aj
30 21 29 eqeltrd φj0n0Anj
31 27 3 30 iserex φseq0+n0AndomseqM+n0Andom
32 26 31 mpbid φseqM+n0Andom
33 17 32 eqeltrrd φseqM+Fdom
34 5 6 4 10 33 isumclim2 φseqM+FkMAk
35 14 adantl φk0n0Ank=Ak
36 expcl Ak0Ak
37 1 36 sylan φk0Ak
38 27 5 3 35 37 26 isumsplit φk0Ak=k=0M1Ak+kMAk
39 0zd φ0
40 27 39 35 37 22 isumclim φk0Ak=11A
41 38 40 eqtr3d φk=0M1Ak+kMAk=11A
42 1re 1
43 42 ltnri ¬1<1
44 fveq2 A=1A=1
45 abs1 1=1
46 44 45 eqtrdi A=1A=1
47 46 breq1d A=1A<11<1
48 43 47 mtbiri A=1¬A<1
49 48 necon2ai A<1A1
50 2 49 syl φA1
51 1 50 3 geoser φk=0M1Ak=1AM1A
52 51 oveq1d φk=0M1Ak+kMAk=1AM1A+kMAk
53 41 52 eqtr3d φ11A=1AM1A+kMAk
54 53 oveq1d φ11A1AM1A=1AM1A+kMAk-1AM1A
55 1cnd φ1
56 ax-1cn 1
57 1 3 expcld φAM
58 subcl 1AM1AM
59 56 57 58 sylancr φ1AM
60 subcl 1A1A
61 56 1 60 sylancr φ1A
62 50 necomd φ1A
63 subeq0 1A1A=01=A
64 56 1 63 sylancr φ1A=01=A
65 64 necon3bid φ1A01A
66 62 65 mpbird φ1A0
67 55 59 61 66 divsubdird φ11AM1A=11A1AM1A
68 nncan 1AM11AM=AM
69 56 57 68 sylancr φ11AM=AM
70 69 oveq1d φ11AM1A=AM1A
71 67 70 eqtr3d φ11A1AM1A=AM1A
72 59 61 66 divcld φ1AM1A
73 5 6 15 10 32 isumcl φkMAk
74 72 73 pncan2d φ1AM1A+kMAk-1AM1A=kMAk
75 54 71 74 3eqtr3rd φkMAk=AM1A
76 34 75 breqtrd φseqM+FAM1A