Metamath Proof Explorer


Theorem grpissubg

Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses grpissubg.b B=BaseG
grpissubg.s S=BaseH
Assertion grpissubg GGrpHGrpSB+H=+GS×SSSubGrpG

Proof

Step Hyp Ref Expression
1 grpissubg.b B=BaseG
2 grpissubg.s S=BaseH
3 simpl SB+H=+GS×SSB
4 3 adantl GGrpHGrpSB+H=+GS×SSB
5 2 grpbn0 HGrpS
6 5 ad2antlr GGrpHGrpSB+H=+GS×SS
7 grpmnd GGrpGMnd
8 mndmgm GMndGMgm
9 7 8 syl GGrpGMgm
10 grpmnd HGrpHMnd
11 mndmgm HMndHMgm
12 10 11 syl HGrpHMgm
13 9 12 anim12i GGrpHGrpGMgmHMgm
14 13 adantr GGrpHGrpSB+H=+GS×SGMgmHMgm
15 14 ad2antrr GGrpHGrpSB+H=+GS×SaSbSGMgmHMgm
16 simpr GGrpHGrpSB+H=+GS×SSB+H=+GS×S
17 16 ad2antrr GGrpHGrpSB+H=+GS×SaSbSSB+H=+GS×S
18 simpr GGrpHGrpSB+H=+GS×SaSaS
19 18 anim1i GGrpHGrpSB+H=+GS×SaSbSaSbS
20 1 2 mgmsscl GMgmHMgmSB+H=+GS×SaSbSa+GbS
21 15 17 19 20 syl3anc GGrpHGrpSB+H=+GS×SaSbSa+GbS
22 21 ralrimiva GGrpHGrpSB+H=+GS×SaSbSa+GbS
23 simpl GGrpHGrpGGrp
24 23 adantr GGrpHGrpSB+H=+GS×SGGrp
25 simplr GGrpHGrpSB+H=+GS×SHGrp
26 1 sseq2i SBSBaseG
27 26 biimpi SBSBaseG
28 27 adantr SB+H=+GS×SSBaseG
29 28 adantl GGrpHGrpSB+H=+GS×SSBaseG
30 ovres xSySx+GS×Sy=x+Gy
31 30 adantl GGrpHGrpSB+H=+GS×SxSySx+GS×Sy=x+Gy
32 oveq +H=+GS×Sx+Hy=x+GS×Sy
33 32 adantl SB+H=+GS×Sx+Hy=x+GS×Sy
34 33 eqcomd SB+H=+GS×Sx+GS×Sy=x+Hy
35 34 ad2antlr GGrpHGrpSB+H=+GS×SxSySx+GS×Sy=x+Hy
36 31 35 eqtr3d GGrpHGrpSB+H=+GS×SxSySx+Gy=x+Hy
37 36 ralrimivva GGrpHGrpSB+H=+GS×SxSySx+Gy=x+Hy
38 24 25 2 29 37 grpinvssd GGrpHGrpSB+H=+GS×SaSinvgHa=invgGa
39 38 imp GGrpHGrpSB+H=+GS×SaSinvgHa=invgGa
40 eqid invgH=invgH
41 2 40 grpinvcl HGrpaSinvgHaS
42 41 ad4ant24 GGrpHGrpSB+H=+GS×SaSinvgHaS
43 39 42 eqeltrrd GGrpHGrpSB+H=+GS×SaSinvgGaS
44 22 43 jca GGrpHGrpSB+H=+GS×SaSbSa+GbSinvgGaS
45 44 ralrimiva GGrpHGrpSB+H=+GS×SaSbSa+GbSinvgGaS
46 eqid +G=+G
47 eqid invgG=invgG
48 1 46 47 issubg2 GGrpSSubGrpGSBSaSbSa+GbSinvgGaS
49 48 ad2antrr GGrpHGrpSB+H=+GS×SSSubGrpGSBSaSbSa+GbSinvgGaS
50 4 6 45 49 mpbir3and GGrpHGrpSB+H=+GS×SSSubGrpG
51 50 ex GGrpHGrpSB+H=+GS×SSSubGrpG