Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpissubg.b | |
|
grpissubg.s | |
||
Assertion | grpissubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpissubg.b | |
|
2 | grpissubg.s | |
|
3 | simpl | |
|
4 | 3 | adantl | |
5 | 2 | grpbn0 | |
6 | 5 | ad2antlr | |
7 | grpmnd | |
|
8 | mndmgm | |
|
9 | 7 8 | syl | |
10 | grpmnd | |
|
11 | mndmgm | |
|
12 | 10 11 | syl | |
13 | 9 12 | anim12i | |
14 | 13 | adantr | |
15 | 14 | ad2antrr | |
16 | simpr | |
|
17 | 16 | ad2antrr | |
18 | simpr | |
|
19 | 18 | anim1i | |
20 | 1 2 | mgmsscl | |
21 | 15 17 19 20 | syl3anc | |
22 | 21 | ralrimiva | |
23 | simpl | |
|
24 | 23 | adantr | |
25 | simplr | |
|
26 | 1 | sseq2i | |
27 | 26 | biimpi | |
28 | 27 | adantr | |
29 | 28 | adantl | |
30 | ovres | |
|
31 | 30 | adantl | |
32 | oveq | |
|
33 | 32 | adantl | |
34 | 33 | eqcomd | |
35 | 34 | ad2antlr | |
36 | 31 35 | eqtr3d | |
37 | 36 | ralrimivva | |
38 | 24 25 2 29 37 | grpinvssd | |
39 | 38 | imp | |
40 | eqid | |
|
41 | 2 40 | grpinvcl | |
42 | 41 | ad4ant24 | |
43 | 39 42 | eqeltrrd | |
44 | 22 43 | jca | |
45 | 44 | ralrimiva | |
46 | eqid | |
|
47 | eqid | |
|
48 | 1 46 47 | issubg2 | |
49 | 48 | ad2antrr | |
50 | 4 6 45 49 | mpbir3and | |
51 | 50 | ex | |