| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpissubg.b |  | 
						
							| 2 |  | grpissubg.s |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 | 2 | grpbn0 |  | 
						
							| 6 | 5 | ad2antlr |  | 
						
							| 7 |  | grpmnd |  | 
						
							| 8 |  | mndmgm |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | grpmnd |  | 
						
							| 11 |  | mndmgm |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 9 12 | anim12i |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 16 | ad2antrr |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | anim1i |  | 
						
							| 20 | 1 2 | mgmsscl |  | 
						
							| 21 | 15 17 19 20 | syl3anc |  | 
						
							| 22 | 21 | ralrimiva |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 | 1 | sseq2i |  | 
						
							| 27 | 26 | biimpi |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | ovres |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 |  | oveq |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 33 | eqcomd |  | 
						
							| 35 | 34 | ad2antlr |  | 
						
							| 36 | 31 35 | eqtr3d |  | 
						
							| 37 | 36 | ralrimivva |  | 
						
							| 38 | 24 25 2 29 37 | grpinvssd |  | 
						
							| 39 | 38 | imp |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 2 40 | grpinvcl |  | 
						
							| 42 | 41 | ad4ant24 |  | 
						
							| 43 | 39 42 | eqeltrrd |  | 
						
							| 44 | 22 43 | jca |  | 
						
							| 45 | 44 | ralrimiva |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 1 46 47 | issubg2 |  | 
						
							| 49 | 48 | ad2antrr |  | 
						
							| 50 | 4 6 45 49 | mpbir3and |  | 
						
							| 51 | 50 | ex |  |