Database
BASIC LINEAR ALGEBRA
The determinant
Laplace expansion of determinants (special case)
gsummatr01lem4
Next ⟩
gsummatr01
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsummatr01lem4
Description:
Lemma 2 for
gsummatr01
.
(Contributed by
AV
, 8-Jan-2019)
Ref
Expression
Hypotheses
gsummatr01.p
⊢
P
=
Base
SymGrp
N
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
gsummatr01.0
⊢
0
˙
=
0
G
gsummatr01.s
⊢
S
=
Base
G
Assertion
gsummatr01lem4
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
Proof
Step
Hyp
Ref
Expression
1
gsummatr01.p
⊢
P
=
Base
SymGrp
N
2
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
3
gsummatr01.0
⊢
0
˙
=
0
G
4
gsummatr01.s
⊢
S
=
Base
G
5
eqidd
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
6
eqeq1
⊢
i
=
n
→
i
=
K
↔
n
=
K
7
6
adantr
⊢
i
=
n
∧
j
=
Q
n
→
i
=
K
↔
n
=
K
8
eqeq1
⊢
j
=
Q
n
→
j
=
L
↔
Q
n
=
L
9
8
adantl
⊢
i
=
n
∧
j
=
Q
n
→
j
=
L
↔
Q
n
=
L
10
9
ifbid
⊢
i
=
n
∧
j
=
Q
n
→
if
j
=
L
0
˙
B
=
if
Q
n
=
L
0
˙
B
11
oveq12
⊢
i
=
n
∧
j
=
Q
n
→
i
A
j
=
n
A
Q
n
12
7
10
11
ifbieq12d
⊢
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
13
eldifsni
⊢
n
∈
N
∖
K
→
n
≠
K
14
13
neneqd
⊢
n
∈
N
∖
K
→
¬
n
=
K
15
14
iffalsed
⊢
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
16
15
adantl
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
17
12
16
sylan9eqr
⊢
Q
∈
R
∧
n
∈
N
∖
K
∧
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
n
A
Q
n
18
eldifi
⊢
n
∈
N
∖
K
→
n
∈
N
19
18
adantl
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
n
∈
N
20
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
n
∈
N
→
Q
n
∈
N
21
18
20
sylan2
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
Q
n
∈
N
22
ovexd
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
V
23
5
17
19
21
22
ovmpod
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
24
23
ex
⊢
Q
∈
R
→
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
25
24
3ad2ant3
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
26
25
3ad2ant3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
27
26
imp
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
28
eqidd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
=
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
29
11
adantl
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
∧
i
=
n
∧
j
=
Q
n
→
i
A
j
=
n
A
Q
n
30
eqidd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
∧
i
=
n
→
N
∖
L
=
N
∖
L
31
simpr
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
∈
N
∖
K
32
fveq1
⊢
r
=
Q
→
r
K
=
Q
K
33
32
eqeq1d
⊢
r
=
Q
→
r
K
=
L
↔
Q
K
=
L
34
33
2
elrab2
⊢
Q
∈
R
↔
Q
∈
P
∧
Q
K
=
L
35
simpll
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
→
Q
∈
P
36
eqid
⊢
SymGrp
N
=
SymGrp
N
37
36
1
symgfv
⊢
Q
∈
P
∧
n
∈
N
→
Q
n
∈
N
38
35
18
37
syl2an
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
n
∈
N
39
35
adantr
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
∈
P
40
simplrr
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
K
∈
N
41
18
adantl
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
n
∈
N
42
39
40
41
3jca
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
∈
P
∧
K
∈
N
∧
n
∈
N
43
simpllr
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
K
=
L
44
13
adantl
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
n
≠
K
45
36
1
symgfvne
⊢
Q
∈
P
∧
K
∈
N
∧
n
∈
N
→
Q
K
=
L
→
n
≠
K
→
Q
n
≠
L
46
42
43
44
45
syl3c
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
n
≠
L
47
38
46
jca
⊢
Q
∈
P
∧
Q
K
=
L
∧
L
∈
N
∧
K
∈
N
∧
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
48
47
exp42
⊢
Q
∈
P
∧
Q
K
=
L
→
L
∈
N
→
K
∈
N
→
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
49
34
48
sylbi
⊢
Q
∈
R
→
L
∈
N
→
K
∈
N
→
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
50
49
3imp31
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
51
50
3ad2ant3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
52
51
imp
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
Q
n
∈
N
∧
Q
n
≠
L
53
eldifsn
⊢
Q
n
∈
N
∖
L
↔
Q
n
∈
N
∧
Q
n
≠
L
54
52
53
sylibr
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
Q
n
∈
N
∖
L
55
ovexd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
V
56
nfv
⊢
Ⅎ
i
G
∈
CMnd
∧
N
∈
Fin
57
nfra1
⊢
Ⅎ
i
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
58
nfcv
⊢
Ⅎ
_
i
S
59
58
nfel2
⊢
Ⅎ
i
B
∈
S
60
57
59
nfan
⊢
Ⅎ
i
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
61
nfv
⊢
Ⅎ
i
K
∈
N
∧
L
∈
N
∧
Q
∈
R
62
56
60
61
nf3an
⊢
Ⅎ
i
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
63
nfcv
⊢
Ⅎ
_
i
N
∖
K
64
63
nfel2
⊢
Ⅎ
i
n
∈
N
∖
K
65
62
64
nfan
⊢
Ⅎ
i
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
66
nfv
⊢
Ⅎ
j
G
∈
CMnd
∧
N
∈
Fin
67
nfra2w
⊢
Ⅎ
j
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
68
nfcv
⊢
Ⅎ
_
j
S
69
68
nfel2
⊢
Ⅎ
j
B
∈
S
70
67
69
nfan
⊢
Ⅎ
j
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
71
nfv
⊢
Ⅎ
j
K
∈
N
∧
L
∈
N
∧
Q
∈
R
72
66
70
71
nf3an
⊢
Ⅎ
j
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
73
nfcv
⊢
Ⅎ
_
j
N
∖
K
74
73
nfel2
⊢
Ⅎ
j
n
∈
N
∖
K
75
72
74
nfan
⊢
Ⅎ
j
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
76
nfcv
⊢
Ⅎ
_
j
n
77
nfcv
⊢
Ⅎ
_
i
Q
n
78
nfcv
⊢
Ⅎ
_
i
n
A
Q
n
79
nfcv
⊢
Ⅎ
_
j
n
A
Q
n
80
28
29
30
31
54
55
65
75
76
77
78
79
ovmpodxf
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
=
n
A
Q
n
81
27
80
eqtr4d
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n