Metamath Proof Explorer


Theorem gsummatr01lem4

Description: Lemma 2 for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P=BaseSymGrpN
gsummatr01.r R=rP|rK=L
gsummatr01.0 0˙=0G
gsummatr01.s S=BaseG
Assertion gsummatr01lem4 GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=niNK,jNLiAjQn

Proof

Step Hyp Ref Expression
1 gsummatr01.p P=BaseSymGrpN
2 gsummatr01.r R=rP|rK=L
3 gsummatr01.0 0˙=0G
4 gsummatr01.s S=BaseG
5 eqidd QRnNKiN,jNifi=Kifj=L0˙BiAj=iN,jNifi=Kifj=L0˙BiAj
6 eqeq1 i=ni=Kn=K
7 6 adantr i=nj=Qni=Kn=K
8 eqeq1 j=Qnj=LQn=L
9 8 adantl i=nj=Qnj=LQn=L
10 9 ifbid i=nj=Qnifj=L0˙B=ifQn=L0˙B
11 oveq12 i=nj=QniAj=nAQn
12 7 10 11 ifbieq12d i=nj=Qnifi=Kifj=L0˙BiAj=ifn=KifQn=L0˙BnAQn
13 eldifsni nNKnK
14 13 neneqd nNK¬n=K
15 14 iffalsed nNKifn=KifQn=L0˙BnAQn=nAQn
16 15 adantl QRnNKifn=KifQn=L0˙BnAQn=nAQn
17 12 16 sylan9eqr QRnNKi=nj=Qnifi=Kifj=L0˙BiAj=nAQn
18 eldifi nNKnN
19 18 adantl QRnNKnN
20 1 2 gsummatr01lem1 QRnNQnN
21 18 20 sylan2 QRnNKQnN
22 ovexd QRnNKnAQnV
23 5 17 19 21 22 ovmpod QRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
24 23 ex QRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
25 24 3ad2ant3 KNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
26 25 3ad2ant3 GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
27 26 imp GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
28 eqidd GCMndNFiniNjNiAjSBSKNLNQRnNKiNK,jNLiAj=iNK,jNLiAj
29 11 adantl GCMndNFiniNjNiAjSBSKNLNQRnNKi=nj=QniAj=nAQn
30 eqidd GCMndNFiniNjNiAjSBSKNLNQRnNKi=nNL=NL
31 simpr GCMndNFiniNjNiAjSBSKNLNQRnNKnNK
32 fveq1 r=QrK=QK
33 32 eqeq1d r=QrK=LQK=L
34 33 2 elrab2 QRQPQK=L
35 simpll QPQK=LLNKNQP
36 eqid SymGrpN=SymGrpN
37 36 1 symgfv QPnNQnN
38 35 18 37 syl2an QPQK=LLNKNnNKQnN
39 35 adantr QPQK=LLNKNnNKQP
40 simplrr QPQK=LLNKNnNKKN
41 18 adantl QPQK=LLNKNnNKnN
42 39 40 41 3jca QPQK=LLNKNnNKQPKNnN
43 simpllr QPQK=LLNKNnNKQK=L
44 13 adantl QPQK=LLNKNnNKnK
45 36 1 symgfvne QPKNnNQK=LnKQnL
46 42 43 44 45 syl3c QPQK=LLNKNnNKQnL
47 38 46 jca QPQK=LLNKNnNKQnNQnL
48 47 exp42 QPQK=LLNKNnNKQnNQnL
49 34 48 sylbi QRLNKNnNKQnNQnL
50 49 3imp31 KNLNQRnNKQnNQnL
51 50 3ad2ant3 GCMndNFiniNjNiAjSBSKNLNQRnNKQnNQnL
52 51 imp GCMndNFiniNjNiAjSBSKNLNQRnNKQnNQnL
53 eldifsn QnNLQnNQnL
54 52 53 sylibr GCMndNFiniNjNiAjSBSKNLNQRnNKQnNL
55 ovexd GCMndNFiniNjNiAjSBSKNLNQRnNKnAQnV
56 nfv iGCMndNFin
57 nfra1 iiNjNiAjS
58 nfcv _iS
59 58 nfel2 iBS
60 57 59 nfan iiNjNiAjSBS
61 nfv iKNLNQR
62 56 60 61 nf3an iGCMndNFiniNjNiAjSBSKNLNQR
63 nfcv _iNK
64 63 nfel2 inNK
65 62 64 nfan iGCMndNFiniNjNiAjSBSKNLNQRnNK
66 nfv jGCMndNFin
67 nfra2w jiNjNiAjS
68 nfcv _jS
69 68 nfel2 jBS
70 67 69 nfan jiNjNiAjSBS
71 nfv jKNLNQR
72 66 70 71 nf3an jGCMndNFiniNjNiAjSBSKNLNQR
73 nfcv _jNK
74 73 nfel2 jnNK
75 72 74 nfan jGCMndNFiniNjNiAjSBSKNLNQRnNK
76 nfcv _jn
77 nfcv _iQn
78 nfcv _inAQn
79 nfcv _jnAQn
80 28 29 30 31 54 55 65 75 76 77 78 79 ovmpodxf GCMndNFiniNjNiAjSBSKNLNQRnNKniNK,jNLiAjQn=nAQn
81 27 80 eqtr4d GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=niNK,jNLiAjQn